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Abstract

The notion of entropy measure valued solutions has recently been ad-
vocated as the appropriate framework for solutions to hyperbolic sys-
tems of conservation laws. This thesis presents the results of numerical
simulations to explore the effectiveness of the entropy measure valued
solution paradigm in resolving the so-called Carbuncle phenomenon
in hypersonic compressible fluid flow.

We demonstrate the Carbuncle phenomenon in 1D, 1-1/2D and 2D by
providing numerical evidence that even state-of-the-art entropy consis-
tent schemes are unable to resolve a steady shock at high Mach num-
bers in a stable manner. We then use numerical simulations to estimate
statistical quantities of interest associated with the entropy measure
valued solutions such as the mean and variance.

Our results indicate that these statistical quantities suffer from less se-
vere 1D instability and in some cases no longer suffer from 1-1/2D insta-
bility. On the other hand, these statistical quantities are still afflicted by
the Carbuncle phenomenon in 2D. This leads us to conclude that the
Carbuncle phenomenon is manifested in a significantly different man-
ner in 1D, 1-1/2D and 2D, and furthermore that the limited effectiveness
of the entropy measure valued solution framework at resolving this nu-
merical instability supports the prevalent view in the literature that the
Carbuncle phenomenon has a purely numerical origin.
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Résumé

La notion de solutions mesurables entropiques a récemment été suggéré
comme étant le cadre de travail approprié pour les solutions de systèmes
hyperboliques de lois de conservation. Ce mémoire présente les résultats
de simulations numériques afin d’explorer l’efficacité du paradigme de
la solution mesurable entropique pour résoudre le soi-disant phénomène
de Carbuncle dans un écoulement compressible hypersonique.

Nous démontrons le phénomène de Carbuncle en 1D, 1-1/2D et 2D et
déduisons de nos résultats numériques que même des schémas entro-
piques de l’état de l’art sont incapables de discerner avec suffisamment
de résolution un choc stationnaire à nombre de Mach élevé de manière
stable. Nous utilisons ensuite des simulations numériques pour esti-
mer certaines quantités statistiques d’intérêt associés aux solutions me-
surables entropiques telles que la moyenne et la variance.

Nos résultats indiquent que ces quantités statistiques souffrent moins
d’instabilité à 1D et que dans certains cas ne souffrent pas d’instabilité
à 1-1/2D. En revanche, ces quantités statistiques sont toujours affligées
par le phénomène de Carbuncle en 2D. Ceci nous porte àconclure que
le phénomène de Carbuncle est manifesté de manière différente en 1D,
1-1/2D et 2D, et que l’efficacité limitée du cadre de travail des solutions
mesurables entropiques pour résoudre cette instabilité numérique sup-
porte le point de vue partagé dans la littérature que le phénomène de
Carbuncle est d’origine purement numérique.
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Chapter 1

Introduction

Several important problems in the physical sciences are modelled by systems
of conservation laws

∂tu +∇x f (u) = 0,
u(x, 0) = u0(x)

(1.1)

where d, N ∈ N, u = u(x, t) : Rd × R+ → RN is a vector of conserved
variables and f : RN → RN×d is the associated flux function.

The system (1.1) is called hyperbolic if the Jacobian of the flux function
∂u( f · n) has real eigenvalues for all n ∈ R with |n| = 1. Prominent examples
of hyperbolic systems of conservation laws include the shallow water equa-
tions from oceanography, the Euler equations from compressible fluid flow
and the magnetohydrodynamics (MHD) equations from plasma physics. A
rigorous treatment of the theory of hyperbolic conservation laws can, for
example, be found in [11].

1.1 Theoretical Results

Solutions to the Cauchy problem (1.1) with smooth initial conditions can
develop discontinuities in the form of shockwaves in finite time even for the
scalar case (N = 1) (see, e.g., [32]). Therefore, solutions to (1.1) are defined
in the sense of distrbutions.

Definition 1.1 (Weak Solution) Let u ∈ L1
loc(R

d×R+, RN) be a function with
the property that for all test functions ϕ ∈ C1

0(R
d ×R+, RN) it holds that

1



1. Introduction

∫
R+

∫
Rd

∂t ϕ(x, t)u(x, t)+∇x ϕ(x, t) f
(
u(x, t)

)
dxdt+

∫
Rd

ϕ(x, 0)u(x, 0)dx = 0.

(1.2)
Then u is called a weak solution to the Cauchy problem (1.1).

Unfortunately, weak solutions are, in general, not unique even for very sim-
ple non-linear scalar conservation laws such as Burgers’ equation (see, e.g.,
[32]). This necessitates the imposition of additional admissibility criteria in
the form of so-called entropy conditions.

Definition 1.2 (Entropy Pair) Let η : RN → R and q : RN → Rd be two func-
tions such that η is convex and such that q′ = η′ · f ′. Then (η, q) is called an
entropy pair for the conservation law (1.1).

Definition 1.3 (Entropy Solution) Let u ∈ L1
loc(R

d ×R+, RN) be a weak solu-
tion to the Cauchy problem (1.1) with the property that for all entropy pairs (η, q)
and all positive test functions ϕ ∈ C1

0(R
d ×R+, RN) it holds that

∫
R+

∫
Rd

∂t ϕ(x, t)η
(
u(x, t)

)
+∇x ϕ(x, t)q

(
u(x, t)

)
dxdt ≥ 0. (1.3)

Then u is called an entropy solution to the Cauchy problem (1.1).

Note that for the special case of scalar conservation laws, every convex func-
tion η : R → R gives rise to an entropy pair by defining q : R → Rd as
the vector q(u) =

∫ u
0 η′(ξ) f ′(ξ)dξ. Specifically, defining for every k ∈ R,

η(u) = |u− k|, we obtain the so-called Kruzkov entropy pairs. These entropy
pairs were used by S. N. Kruzkov to prove the existence and uniqueness of
entropy solutions to the scalar Cauchy problem (1.1) [29].

Unfortunately, global well-posedness results for systems of conservation
laws are much more limited in the literature. P. D. Lax proved the exis-
tence and stability of entropy solutions to the Cauchy problem (1.1) in the
special case of one-dimension (d = 1) with Riemann initial data [31]. Exis-
tence of entropy solutions to one-dimensional Cauchy problems (1.1) with
more general initial conditions was proven by S. Bianchini and A. Bressan
using the vanishing viscosity method [5].

Global well-posedness results for general systems of conservation laws in
several space dimensions however, do not exist in the literature. Indeed,
recent results such as, .e.g, [7] show that infinitely many entropy solutions
can exist for well known systems of conservation laws such as the isentropic
Euler equations in two space dimensions.
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1.2. Numerical Methods

1.2 Numerical Methods

Of fundamental importance in the study of systems of conservation laws is
the design of numerical methods for approximating solutions to the Cauchy
problem (1.1). Essentially, numerical schemes for approximating (1.1) can be
divided into two broad categories. The first category consists of the so-called
finite volume methods (FVM), which are based on approximate Riemann
solvers and use total variation diminishing (TVD) (see, e.g., [20]), essentially
non-oscillatory (ENO) (see, e.g., [21]) or weighted ENO (WENO) (see, e.g.,
[27]) reconstruction techniques along with strong stability preserving (SSP)
Runge-Kutta methods. The second class of numerical schemes consist of the
so-called discontinuous Galerkin finite element methods (DGFEM) (see, e.g.,
[9]).

The analysis of these numerical schemes usually involves proving conver-
gence to an entropy solution in the limit as the mesh width is reduced to
zero. Unfortunately, most results in the literature are restricted to the special
case of scalar conservation laws. Monotone (first-order) schemes have been
proven to converge to the entropy solution for scalar conservation laws (see,
e.g., [8, 10]) and more recently arbitrarily (formally), high order schemes
have also been shown to converge to the entropy solution for scalar conser-
vation laws [19]. Similarly, convergence results have also been obtained for
arbitrarily (formally) high order DGFEM schemes (see, e.g., [22, 26]).

Rigorous convergence results for generic systems of conservation laws in
several space dimensions however, do not exist in the literature. Moreover,
the stability of numerical approximations of solutions to systems of conser-
vation laws is not well understood. Indeed, the only notion of numerical sta-
bility that has been analysed in detail is that of entropy stability. Essentially,
numerical schemes are designed to satisfy a discrete version of the entropy
inequality (1.3) but evidence indicates that this might not be sufficient to
guarantee convergence to an entropy solution. Indeed, numerical examples
such as the Kelvin-Helmholtz problem and the Richtmeyer-Meshkov prob-
lem (see, e.g., [18]) indicate that the numerical approximations produced by
even state-of-the-art numerical methods such as the TeCNO schemes [19] do
not converge to an entropy solution and are not stable under perturbations
of the initial conditions [18].

1.3 The Carbuncle Problem in Hypersonic Compress-
ible Fluid Flow

A key problem in the numerical simulation of hypersonic flows is the ac-
curate capture of strong shocks. Indeed, over the past three decades there
have been many articles in the literature that demonstrate the failure of oth-
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1. Introduction

erwise stable finite volume schemes to accurately predict strong shocks at
very high Mach numbers without introducing numerical anomalies (see, e.g.,
[34, 35, 36]).

The term Carbuncle phenomenon is often used to describe this numerical insta-
bility that prevents the accurate numerical capture of shock waves (see, e.g,
[34]). A precise definition of the Carbuncle phenomenon is difficult to obtain
from the literature and instead the term is used to refer to a wide range of
numerical problems in shock capturing. Indeed, M. Pandolfi and D. Ambro-
sio also refer to problems in the numerical simulation of quasi-conical shock
waves around slender bodies or in the numerical simulation of interstellar
flows in astrophysics as examples of the Carbuncle phenomenon [34]. Nev-
ertheless, a large proportion of articles in the literature concern supersonic
and hypersonic flows, and this will be our focus in this thesis.

Numerical artefacts were first observed by K. Peery and S. Imlay [35] when
computing hypersonic flows past a circular cylinder. Instead of obtaining a
smooth bow shock profile upstream of the cylinder, they observed that the
solution featured a pair of oblique shocks replacing the bow shock. Interest-
ingly, the numerical solution was still an entropy solution of the Euler equa-
tions but it was clearly fundamentally different from the expected physical
solution. Since this original discovery, similar problems have been observed
when computing a steady hypersonic shock in 1D or 1− 1/2D by, e.g., T.
Barth and F. Ismail et al [4, 23, 25, 28].

Many fixes and numerical schemes have been proposed that claim to resolve
this anomaly. Most articles in the literature claim that the cause of the nu-
merical instability is insufficient numerical diffusion and the fact that numer-
ically diffusive schemes such as the Rusanov scheme do not suffer from this
instability supports this view. Nevertheless, a universally accepted, rigorous
treatment of the causes and cure of the carbuncle phenomenon is lacking in
the literature (see, .e.g, [15, 25, 28, 33]). From a theoretical point of view,
this is caused by the lack of an accepted explanation for this breakdown.
Furthermore, verifying the claims of different schemes using numerical ex-
periments is also troublesome because the phenomenon depends crucially
on several factors such as mesh width, the positioning of the shock and the
flow Mach number etc. Indeed, K. Kitamura et al have demonstrated that
even extremely dissipative schemes such as the HLLE solver [14], which
is widely considered to be a Carbuncle-free scheme, can display numerical
instability under certain conditions [28]. An extremely comprehensive treat-
ment of the topic can, e.g., be found in [23].

4



1.4. Goals and Scope of this Thesis

1.4 Goals and Scope of this Thesis

The discussion in the previous sections indicates that there are serious de-
ficiencies in both the conventional mathematical paradigm of entropy solu-
tions as well as the numerical methods that approximate entropy solutions.
These inadequacies have lead to a good deal of interest in reformulating
the Cauchy problem (1.1) as a more general measure valued (MV) Cauchy
problem. Solutions to such MV Cauchy problems are then Young measures,
which are essentially parameterised probability measures. This framework
was originally introduced by R. J. DiPerna in 1983 [12] and was based on
the work of L. Tartar on compensated compactness [37]. More recently, U. S.
Fjordholm et al [17, 18] have expanded on these results and proven certain
theoretical results as well as convergence of numerical approximations of
a broad class of schemes to a so-called entropy measure valued (EMV) solu-
tion. In particular, the issue of lack of convergence in the Kelvin-Helmholtz
and Richtmeyer-Meshkov problems has been shown to be resolved using
the framework of Young measures [18].

Our purpose in this thesis is to explore the effectiveness of this new math-
ematical paradigm in resolving the Carbuncle phenomenon in hypersonic
compressible fluid flow. Due to the difficulty of applying purely analyti-
cal methods to prove convergence or lack of convergence to a steady state
solution, we will rely primarily on numerical evidence to support our ar-
guments. The rest of this thesis is organised as follows: In Chapter 2 we
give a self-contained introduction to Young measures and entropy measure
valued solutions and we discuss existing results on the well-posedness of
EMV solutions to both scalar conservation laws and systems of conserva-
tion laws. In Chapter 3 we discuss briefly the convergence and construction
of approximate EMV solutions and we supplement this with simple numer-
ical examples. In Chapters 4 and 5 we explore the Carbuncle phenomenon
in 1D and 1− 1/2D respectively, by first providing numerical evidence that
state-of-the-art finite volume schemes do indeed display numerical instabil-
ity when resolving a steady shock, and then considering corresponding MV
Cauchy problems and using numerical simulations to estimate statistical
quantities associated with the EMV solution. Our aim in Chapters 4 and
5 is to analyse the stability and convergence properties of these statistical
quantities. Finally, in Chapter 6 we explore the Carbuncle phenomenon in
2D, which arises when computing hypersonic flow past a circular cylinder.
We provide numerical evidence that this instability also afflicts several finite
volume schemes and we once again use numerical simulations to estimate
statistical quantities associated with the EMV solution to corresponding MV
Cauchy problems.
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Chapter 2

Young Measures and Entropy Measure
Valued Solutions

2.1 Young Measures

This section contains a brief introduction to Young measures. In an effort to
keep the introduction self-contained, some elementary concepts from Prob-
ability theory and Topology are also stated. More information on these
concepts can, e.g., be found in [16]. A comprehensive treatment of Young
measures can, e.g., be found in [2].

2.1.1 Radon Measures and Weak* Convergence

Definition 2.1 (Borel Measure) Let n ∈N, let B(Rn) denote the Borel σ-algebra
on Rn and let µ be a measure on the space (Rn,B(Rn)). Then µ is called a Borel
measure on Rn.

Definition 2.2 (Borel Regular Measure) Let n ∈ N and let µ be a Borel mea-
sure on Rn such that for every A ⊂ Rn, there exists a Borel set B ∈ B(Rn) such
that A ⊂ B and µ(A) = µ(B). Then the measure µ is said to be Borel regular on
Rn.

Definition 2.3 (Radon Measure) Let n ∈ N and let µ be a Borel regular mea-
sure on Rn such that for all compact sets K ⊂ Rn it holds that µ(K) < ∞. Then µ
is called a Radon measure.

We denote the set of all Radon measures on Rn byM(Rn). A famous result
in Measure theory is the Riesz-Markov representation theorem, which estab-
lishes a link between M(Rn) and C0(Rn) i.e., the set of real-valued, contin-
uous functions on Rn with compact support equipped with the supremum
norm.
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2. Young Measures and Entropy Measure Valued Solutions

Theorem 2.4 (Riesz-Markov Representation Theorem) Let ψ : C0(Rn)→ R

be a positive linear functional. Then there exists a unique Radon measure µ ∈
M(Rn) such that for all f ∈ C0(Rn) it holds that〈

ψ, f
〉

:= ψ( f ) =
∫

Rn
f dµ :=

〈
µ, f

〉
. (2.1)

A proof of Theorem 2.4 can, e.g., be found in [16]. We remark that by an
abuse of notation we shall sometimes write

〈
µ, f

〉
as
〈
µ, f (ξ)

〉
.

Essentially, Theorem 2.4 states thatM(Rn) can be associated with the dual
space of C0(Rn). In particular, this duality induces a weak* (or narrow)
topology onM(Rn):

Definition 2.5 (Weak* Toplogy on M(Rn)) Let T ∗ ⊆ 2M(Rn) be the the coars-
est topology onM(Rn) such that for every f ∈ C0(Rn), the mapping
I f : M(Rn) → R given by µ 7→

∫
Rn f dµ is continuous. Then T ∗ is called the

weak* topology onM(Rn).

This leads naturally to the idea of weak* (also called weak or narrow) con-
vergence of Radon measures:

Definition 2.6 (Weak* Convergence of Radon Measures) Let µ ∈ M(Rn)
be a Radon measure and let {µn}n∈N ⊆ M(Rn) be a sequence of Radon measures
such that for all functions f ∈ C0(Rn) it holds that

lim
n→∞

〈
µn, f

〉
=
〈
µ, f

〉
. (2.2)

Then we say that the sequence {µn}n∈N converges weakly* to µ and we denote weak
convergence by µn ⇀ µ.

2.1.2 Probability Measures and the Wasserstein Metric

Definition 2.7 (Set of Probability Measures on Rn) Let P(Rn) ⊂ M(Rn)
be the set given by

P(Rn) =
{

µ ∈ M(Rn) : µ ≥ 0, µ(Rn) = 1
}

. (2.3)

Then P(Rn) is called the set of probability measures on Rn.

Definition 2.8 (Probability Measures with Finite Moments) Let p ∈ [1, ∞)
and let P p(Rn) ⊂ P(Rn) be the set given by

P p(Rn) =
{

µ ∈ P(Rn) :
〈
µ, |ξ|p

〉
< ∞

}
. (2.4)

Then P(Rn) is called the set of probability measures on Rn with finite p-th moment.

8



2.1. Young Measures

Definition 2.9 (Wasserstein Metric) Let p ∈ [1, ∞) and let Wp : P p(Rn) ×
P p(Rn)→ [0, ∞) be the function given by

Wp(µ, ν) = inf
{ ∫

Rn×Rn
|ξ − ζ|pdπ(µ, ν) : π(µ, ν) ∈ Π(µ, ν)

} 1
p

(2.5)

where Π(µ, ν) is the set of all probability measures on Rn ×Rn with marginals µ
and ν:

Π(µ, ν) =
{

π ∈ P(Rn×Rn) : π(A×Rn) = µ(A), π(Rn×A) = ν(A) ∀A ∈ B(Rn)
}

.
(2.6)

Then Wp is called the Wasserstein metric on P p(Rn).

Of course, the fact that Wp is indeed a metric on P p(Rn) is non-trivial. A
detailed proof can, e.g., be found in [1]. Another important fact is that Wp
metrizes the topology of weak* convergence on P p(Rn).

2.1.3 Young Measures and Random Fields

Definition 2.10 (Young Measure) Let ν : D ⊆ Rd → P(RN) be a mapping
with the property that for all f ∈ C0(Rn) it holds that the function

〈
ν, f
〉

: D ⊆
Rd → R is Borel-measurable. Then ν is called a Young measure from D ⊆ Rd to
Rn.

In other words, a Young measure is a weakly measurable function. We
denote the set of all Young measures from D ⊆ Rd to Rn by Y(D, Rn).
Moreover, for simplicity we often write the image of a Young measure ν(z)
as νz.

Definition 2.11 (Uniformly Bounded Young Measures) Let D ⊂ Rd, let K ⊂
Rn be a compact set and let ν ∈ Y(D, Rn) be a Young measure such that for all
x ∈ D it holds that

suppνx ⊂ K. (2.7)

Then ν is said to be a uniformly bounded Young measure.

We remark that for the special case when ν is atomic i.e. there exists some
function u : D ⊆ Rd → Rn such that for all x ∈ D it holds that νx = δu(x),
the Young measure ν is uniformly bounded if and only if ‖u‖L∞(D) < ∞.

The following elementary result is also extremely useful.

Proposition 2.12 Let u : Rd → Rn be a measurable function and let ν : Rd →
P(RN) be the mapping with the property that for all x ∈ Rd it holds that

ν(x) := νx = δu(x). (2.8)

Then ν ∈ Y(Rd, Rn).

9



2. Young Measures and Entropy Measure Valued Solutions

The proof of this proposition is straightforward and is omitted for the sake
of brevity.

Two notions of convergence can now be defined on Y(Rd, Rn):

Definition 2.13 (Narrow Convergence) Let D ⊆ Rd, let ν ∈ Y(D, Rn) be a
Young measure and let {νn}n∈N ⊆ Y(D, Rn) be a sequence of Young measures
such that for all f ∈ C0(Rn) and all test functions ϕ ∈ L1(D) it holds that

lim
n→∞

∫
D

ϕ(x)
〈
νn

x , f
〉
dx =

∫
D

ϕ(x)
〈
νx, f

〉
dx. (2.9)

Then we say that the sequence νn converges in the narrow sense to ν and we write
νn ∗−→ ν.

Definition 2.14 (Strong Convergence) Let p ∈ [1, ∞), let D ⊆ Rd, let ν ∈
Y(D, Rn) be a Young measure and let {νn}n∈N ∈ Y(D, Rn) be a sequence of
Young measures such that

lim
n→∞
‖Wp(ν

n, ν)‖Lp(D) = 0. (2.10)

Then we say that the sequence νn converges in the strong sense to ν and we write
νn → ν.

An important result is the fundamental theorem of Young Measures, which
essentially states that under some mild boundedness conditions, every se-
quence of Young measures has a narrowly convergent subsequence. A com-
prehensive proof and discussion of this theorem can be found in a classic
paper of J. M. Ball [3]. We state a slightly more generalised version of this
theorem found in [18].

Theorem 2.15 (Fundamental Theorem of Young Measures) Let N0 ∈N, let
D ⊆ Rd and let {νn}n∈N ⊆ Y(D, Rn) be a sequence of Young measures. Then
there exists a subsequence {νnk}nk∈N of Young measures and a non-negative mea-
sure valued function ν : D →M+(Rn) such that

• νnk
∗−→ ν,

• ‖νx‖M(Rn) ≤ 1 for a. e. x ∈ D,

• and if K ⊆ Rn is a closed set such that for all n ≥ N0 it holds that suppνn
x ⊂

K for a. e. x ∈ D, then suppνx ⊂ K for a. e. x ∈ D.

Furthermore, suppose that for every measurable and bounded set E ⊂ D, there
exists a non-negative function ρ ∈ C(Rn) such that lim|ξ|→∞ ρ(ξ) = ∞ and with
the property that

sup
n∈N

∫
E

〈
νn

x , ρ
〉
dx < ∞. (2.11)

Then it holds that ‖νx‖M(Rn) = 1 for a. e. x ∈ D and therefore ν ∈ Y(D, Rn).

10



2.1. Young Measures

The proof of this theorem can be found in the appendix of [18].

We remark that for the special case in which ρ ∈ C(Rn) is the function with
the property that for all ξ ∈ Rn it holds that ρ(ξ) = |ξ|p for some p ∈ [1, ∞),
the inequality (2.11) simplifies to

sup
n∈N

∫
D

〈
νn

x , |ξ|p
〉
dx < ∞, (2.12)

which is essentially an Lp-bound.

Another important concept is the connection between Young measures and
random fields.

Definition 2.16 (Random Fields) Let (Ω,F , P) be a probability space, let D ∈
B(Rd) and let u : Ω× D → Rn be a function with the property that for all x ∈ D,
the mapping ω 7→ u(ω, x) is F -measurable. Then u is called a random field.

Definition 2.17 (Law of a Random Field) Let (Ω,F , P) be a probability space,
let D, F ∈ B(Rd) and let u : Ω× D → Rn be a random field. Then the law of the
random field u is given by

νz(F) := P
(
u(., z) ∈ F

)
= P

(
{ω ∈ Ω : u(ω, z) ∈ F}

)
, (2.13)

or equivalently, for all f ∈ C0(Rn) it holds that〈
νz, f

〉
:=
∫

Ω
f (u(ω, z))dP(ω). (2.14)

In the special case where the random field is also jointly-measurable, the
law of the random field in fact defines a Young measure.

Proposition 2.18 Let (Ω,F , P) be a probability space, let D, F ∈ B(Rd) and let
u : Ω × D → Rn be a random field with the property that u is

(
F ⊗ B(Rd)

)
-

measurable. Then the law of the random field u defines a Young measure from D to
Rn.

The proof is straightforward and can, e.g., be found in the appendix of [18].

Interestingly, the converse statement is also true: for every Young measure
ν, it is possible to construct a random variable with law given by ν.

Proposition 2.19 Let D ∈ Rd and let ν ∈ Y(D, Rn) be a Young measure. Then
there exists a probability space (Ω,F , P) and an

(
F ⊗ B(Rd)

)
-measurable func-

tion u : Ω× D → Rn with the property that for all Borel sets B ∈ B(Rd) it holds
that

νz(B) = P
(
u(ω, z) ∈ B

)
. (2.15)

This proof can also be found, e.g., in the appendix of [18]. The major im-
plication of Propositions 2.18 and 2.19 is that every Young measure can be
associated with the law of a jointly measurable random field.
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2. Young Measures and Entropy Measure Valued Solutions

2.2 Entropy Measure Valued Solutions

We can now state the measure valued (MV) Cauchy problem corresponding
to the Cauchy problem (1.1).

Definition 2.20 (Measure Valued Cauchy Problem) Let d, n ∈ N, let ν ∈
Y(Rd ×R+, Rn), σ ∈ Y(Rd, Rn) be two Young measures, let f : Rd → Rn×d be
the flux function and let id : Rn → Rn be the identity function. Then the measure
valued (MV) Cauchy problem corresponding to (1.1) is given by

∂t
〈
ν, id

〉
+∇x ·

〈
ν, f
〉
= 0,

ν(x,0) = σx.
(2.16)

Solutions to the MV Cauchy Problem (2.16) are defined in the following
way:

Definition 2.21 (Measure Valued (MV) Solutions) Let ν ∈ Y(Rd×R+, Rn)
be a Young measure with the property that for all test functions ϕ ∈ C1

0(R
d ×

R+, RN) it holds that∫
R+

∫
Rn

∂t ϕ(x, t)
〈
ν(x,t), id

〉
+∇x ϕ(x, t) ·

〈
ν(x,t), f

〉
dxdt

+
∫

Rd
ϕ(x, 0)

〈
σx, id

〉
dx = 0.

(2.17)

Then ν is called a measure valued (MV) solution to the MV Cauchy problem (2.16).

Definition 2.22 (Entropy Measure Valued (EMV) Solutions) Let ν ∈ Y(Rd×
R+, Rn) be an MV solution to the MV Cauchy problem (2.16) with the prop-
erty that for every entropy pair (η, q) and every non-negative test function ϕ ∈
C1

0(R
d ×R+, RN) it holds that∫

R+

∫
Rn

∂t ϕ(x, t)
〈
ν(x,t), η

〉
+∇x ϕ(x, t) ·

〈
ν(x,t), q

〉
dxdt

+
∫

Rd
ϕ(x, 0)

〈
σx, η

〉
dx ≥ 0.

(2.18)

Then ν is called an entropy measure valued (EMV) solution to the MV Cauchy
problem (2.16).

We denote the set of all entropy solutions to the MV Cauchy problem (2.16)
by E f ,σ. It is immediately seen that

∣∣E f ,σ
∣∣ is at least as large the number

of entropy solutions to the corresponding Cauchy problem (1.1) since every
entropy solution u gives rise to an EMV solution by defining ν ∈ Y(Rd ×
R+, Rn) as the Young measure with the property that for all (x, t) ∈ Rd×R+

it holds that ν(x,t) = δu(x,t). In particular, it immediately follows that EMV
solutions are a more general notion that simple entropy solutions.

12



2.3. Well-Posedness of Entropy Measure Valued Solutions

2.3 Well-Posedness of Entropy Measure Valued Solu-
tions

This section contains a discussion of the existence and uniqueness of EMV
solutions to the MV Cauchy problem (2.16). The entire construction of the
mathematical framework of EMV solutions is based on the hope that the fun-
damental question of well-posedness can be resolved. While it is currently
not possible to prove global well-posedness of EMV solutions to a generic
MV Cauchy problem (2.16), some promising results for special cases can be
stated and proven (see, e.g., [18]).

2.3.1 Scalar Conservation Laws

Theorem 2.23 (Existence of EMV Solutions) Consider the MV Cauchy prob-
lem (2.16) in the special case N = 1 and the Young measure σ ∈ Y(R, R) be
uniformly bounded. Then there exists an EMV solution to (2.16).

The proof of Theorem 2.23 is straightforward and relies on the properties of
Young measures that were stated in Section 2.2. We omit this proof for the
sake of brevity but a detailed argument can be found in [18].

Remark It is important to note that the proof of Theorem 2.23 relies on
the implicit assumption that an entropy solution to the corresponding scalar
Cauchy problem (1.1) is known to exist. It would be an interesting exercise
to construct a proof of this theorem without explicitly utilising a priori our
knowledge of the existence of an entropy solution.

Unfortunately, as the next example indicates, uniqueness of EMV solutions
does not hold in general.

Example 2.24 (Non-uniqueness of EMV Solutions) Consider the one-dimensional
inviscid Burgers’ equation given by

∂tu + ∂x
(u2

2
)
= 0. (2.19)

Let Ω = [0, 1], F = B
(
[0, 1]

)
, P = λ[0,1], let u0 : Ω×R→ R be the F ⊗B(R)-

measurable mapping with the property that for all ω ∈ Ω it holds that

u0(ω, x) =

{
1/2 + ω for x < 0,
1/2−ω for x > 0

(2.20)

and let ũ0 : Ω×R → R be the F ⊗ B(R)-measurable mapping with the property
that for all ω ∈ Ω it holds that

ũ0(ω, x) =

{
3/2−ω for x < 0,
1/2−ω for x > 0.

(2.21)

13



2. Young Measures and Entropy Measure Valued Solutions

Then, the law of both u0 and ũ0 is given by

σx =

{
λ[1/2,3/2] for x < 0,
λ[−1/2,1/2] for x > 0.

(2.22)

The entropy solution u : R×R+ → R of the system (2.19) with initial condition
(2.20) is given by

u(x, t) =

{
1/2 + ω for x < t

2 ,
1/2−ω for x > t

2

(2.23)

and the entropy solution ũ : R×R+ → R of the system (2.19) with initial condi-
tion (2.21) is given by

ũ(x, t) =

{
3/2−ω for x < t−ωt,
1/2−ω for x > t + ωt.

(2.24)

The law ν of u is therefore given by

ν(x,t) =

{
λ[1/2,3/2] for x < t

2 ,
λ[−1/2,1/2] for x > t

2

(2.25)

and the law ν̃ of ũ is given by

ν̃(x,t) =


λ[1/2,3/2] for x < 0,
λ[−1/2,x/t−1/2] + λ[x/t+1/2,3/2] for 0 < x < t,
λ[−1/2,1/2] for x > t.

(2.26)

Therefore, both ν, ν̃ ∈ E f ,σ and hence
∣∣E f ,σ

∣∣ > 1.

Clearly therefore, we cannot expect uniqueness of EMV solutions to a generic
MV Cauchy problem (2.16). In the special case of atomic initial data however,
the following stability result holds.

Theorem 2.25 (Stability of EMV Solutions) Consider the MV Cauchy problem
(2.16) in the special case N = 1, let Id : R → R be the identity function, let
u0 ∈ L∞(Rd), let σ ∈ Y(Rd, R) be a uniformly bounded Young measure, let
u ∈ L∞(Rd×R+, R) be the entropy solution of the Cauchy problem (1.1) with ini-
tial condition u0, let ν ∈ Y(Rd ×R+, R) be an EMV solution of the MV Cauchy
problem (2.16) with initial data σ ∈ Y(Rd, R) and with the property that

1
T

∫ T

0

∫
Rd

〈
ν(x,t), |u0(x)− Id|

〉
dxdt = 0. (2.27)
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2.3. Well-Posedness of Entropy Measure Valued Solutions

Then for all t > 0 it holds that∫
Rd

〈
ν(x,t), |u(x, t)− Id|

〉
dx ≤

∫
Rd

〈
σx, |u0(x)− Id|

〉
dx, (2.28)

or equivalently, for all t > 0 it holds that

‖W1
(
ν(.,t), δu(.,t)

)
‖L1(Rd) ≤ ‖W1

(
σ, δu0

)
‖L1(Rd). (2.29)

In particular σ = δu0 =⇒ ν = δu.

The proof of Theorem 2.25 can be found in [18].

2.3.2 Systems of Conservation Laws

As mentioned previously, it is too much to expect a uniqueness or stability
result for MV Cauchy problems (2.16) involving a generic hyperbolic system
of conservation laws. However, in the case when the corresponding Cauchy
problem (1.1) is known to have a classical solution, the following stability
result holds:

Theorem 2.26 (Stability of Perturbations of Classical Solutions) Let K ⊂ Rn

be a compact set, let Id : Rn → Rn be the identity function, let u0 : Rd → K, let
u ∈W1,∞(Rd×R+, K) be a classical solution of the the Cauchy problem (1.1) with
initial condition u0, let σ ∈ Y(Rd, Rn) with suppσ ⊂ K, let ν ∈ Y(Rd×R+, R)d

with suppν ⊂ K and let the associated entropy function η : Rn → R be uniformly
convex on K. Then there exists a constant C ∈ R such that for all t > 0 it holds
that∫

Rd

〈
ν(x,t), |u(x, t)− Id|2

〉
dx ≤ C(1 + teCt)

∫
Rd

〈
σx, |u0(x)− Id|2

〉
dx, (2.30)

or equivalently, there exists a constant C ∈ R such that for all t > 0 it holds that

‖W2
(
ν(.,t), δu(.,t)

)
‖L2(Rd) ≤ C(1 + teCt)‖W2

(
σ, δu0

)
‖L2(Rd). (2.31)

In particular σ = δu0 =⇒ ν = δu and therefore there exists a unique classical,
weak and entropy solution.

The proof of Theorem 2.26 can also be found in [18].

Remark Note that Theorem 2.26 proves the consistency of EMV solutions
with classical solutions when they exist. In particular, this implies local
uniqueness in time of the MV solutions for as long as a unique classical
solution exists.
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Chapter 3

Approximate EMV Solutions

The discussion in Chapter 2 was limited to a theoretical study of the frame-
work of EMV solutions to the MV Cauchy problem (2.16). This Chapter will
briefly discuss the construction and convergence properties of numerical ap-
proximations of EMV solutions. A detailed exposition on this subject can be
found in [18].

For clarity of exposition we restrict ourselves to the case of two spatial di-
mensions (d = 2). We first set up some notation. The computational domain
is discretised into cells Ci := [xi− 1

2
, xi+ 1

2
)× [yi− 1

2
, yi+ 1

2
) with uniform mesh

width denoted by ∆x and ∆y in the x and y directions respectively. We
denote by u∆

0 the numerical approximation of the initial data, by S∆ the dis-
crete evolution operator associated with a given numerical scheme, by u∆

the numerical approximation of the solution u and by ν∆ the law of u∆.

3.1 Convergence of Approximate EMV Solutions

The main convergence result on numerical approximations of EMV Solu-
tions to the MV Cauchy problem (2.16) is given below.

Theorem 3.1 (Convergence) Let u∆ : Ω × R+ → L∞(R2, Rn) denote the nu-
merical approximation of the random field u : Ω×R+ → L∞(R2, Rn) whose law
is the EMV solution to (2.16) and suppose that u∆ satisfies the following conditions:

• Uniform boundedness: there exists some constant C ∈ R such that for all
ω ∈ Ω it holds that

‖u∆(ω)‖L∞(Rd ,Rn) ≤ C. (3.1)

• Weak Bounded Variation: there exists 1 ≤ r < ∞ such that that for all
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3. Approximate EMV Solutions

ω ∈ Ω it holds that

lim
∆x,∆y→0

∫ T

0
∑
i,j

(∣∣u∆
i+1,j(ω, t)− u∆

i,j(ω, t)
∣∣r

+
∣∣u∆

i,j+1(ω, t)− u∆
i,j(ω, t)

∣∣r)∆x∆ydt = 0.

(3.2)

• Entropy Consistency: there exists some entropy pair (η, q) such that the nu-
merical approximations u∆ satisfy the semi-discrete entropy inequality.

• Consistency with initial data: for all test functions ψ ∈ C1
0(R

2) the law σ∆

of the initial data u∆
0 : Ω→ L∞(R2, Rn) satisfies

lim
∆x,∆y→0

∫
R2

ψ(x, y)
〈
σ∆
(x,y), id

〉
dxdy =

∫
R2

ψ(x, y)
〈
σ(x,y), id

〉
dxdy, (3.3)

and for all for all positive test functions ψ ∈ C1
0(R

2) the law σ∆ of the initial
data u∆

0 satisfies

lim sup
∆x,∆y→0

∫
R2

ψ(x, y)
〈
σ∆
(x,y), η

〉
dxdy ≤

∫
R2

ψ(x, y)
〈
σ(x,y), η

〉
dxdy. (3.4)

Then the approximate Young measures ν∆ converge in the narrow sense up to a
subsequence to an EMV solution ν ∈ Y(R2×R+, Rn) of the MV Cauchy problem
(2.16) as ∆x, ∆y→ 0.

The proof of Theorem 3.1 can be found in [18].

3.2 Construction of Approximate EMV Solutions

Since the uniqueness of EMV solutions to (2.16) can only be guaranteed
in the case of atomic initial data, it makes sense to focus on the special
case where σ = δu0 for some function u0 ∈ L∞(Rd, Rn) ∩L1(Rd, Rn). U. S.
Fjordholm et al propose the following algorithm to construct approximate
EMV solutions.

Algorithm Let (Ω,F , P) be a probability space and let X : Ω→ L∞(Rd, R)∩
L1(Rd, R) be a measurable mapping such that ‖X‖L1(Rd) ≤ 1 P-almost
surely.

• Fix a real number ε � 1, perturb u0 by defining uε
0(ω, x) := u0(x) +

εX(ω, x) and let σε be the law of uε
0.

• For each ω ∈ Ω and ε > 0, let u∆,ε(ω) := S∆uε
0(ω) where S∆ is the

discrete evolution operator corresponding to the numerical scheme.
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3.3. Numerical Examples

• Define ν∆,ε to be the law of u∆,ε
0 .

In practice we are primarily interested in statistical quantities such as the
mean and the moments of the entropy measure valued solution. Thus, in
practice we can use Monte Carlo approximations to obtain an ensemble av-
erage for many such values of ε in order to estimate these quantities.

Examples of Narrowly Convergent Numerical Schemes U. S. Fjordholm et
al identify at least three broad classes of numerical methods that produce
approximations that converge in the narrow sense to an EMV solution.

• All monotone finite volume schemes for scalar conservation laws are
uniformly bounded in L∞, satisfy a discrete entropy inequality and
are TVD. Hence, they satisfy the hypothesis of Theorem 3.1 and are
therefore narrowly convergent.

• In addition, the class of TeCNO schemes introduced by U. S. Fjordholm
et al in [19] is an example of formally, arbitrarily high order narrowly
convergent schemes.

• Finally, as shown by A. Hiltebrand and S. Mishra in [22], space-time
DGFEM methods are also narrowly convergent schemes.

3.3 Numerical Examples

3.3.1 Burgers’ Equation

As a first example of an application of the algorithm proposed in Section 3.2,
we consider a Cauchy problem involving Burgers equation.

Let (Ω,F , P) be a probability space, let X : Ω → [−0.5, 0.5] and Y : Ω →
[−0.5, 0.5] be independent, uniformly distributed random variables, let α, β ∈
R be small constants and consider the Cauchy problem

∂tu + ∂x

(u2

2

)
= 0,

u(x, 0) = u0(x, ω)
(3.5)

where

u0(x, ω) =

{
1 + αX(ω) if x < 0,
0 + βY(ω) if x > 0.

(3.6)

For the purpose of this experiment, we restrict our spatial computational
domain to the interval [−1, 1] and employ so-called transparent boundary
conditions. Our aim is to use Monte-Carlo simulations to estimate the mean
and variance of the approximate measure valued solutions to the associated
MV Cauchy problem. This will allow us to analyse the convergence of the
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3. Approximate EMV Solutions

MV solution as the mesh width is refined and as the amplitude of pertur-
bations α, β is decreased. All results are computed using 400 Monte-Carlo
iterations and using an entropy stable scheme with Roe-type numerical dif-
fusion (see, e.g., [17]).

Figure 3.1 – Approximate ensemble mean and the exact solution at time t = 1 with
perturbations α = β = 0.1 and different mesh widths.

Figure 3.2 – Cauchy Rates for the ensemble mean as a function of the total number
of mesh points.

We begin by computing the Monte-Carlo approximation of the mean, de-
noted by ū∆x

x,1 of the probability measures ν∆x
x,1 for different values of the mesh

width. Figure 3.1 displays our results and indicates that this mean seems to
converge to the exact solution as the number of mesh points is increased. To
further verify this convergence, we calculate the L1-norm of the successive
differences in the ensemble mean across the different mesh widths:

‖ū∆x
x,1 − ū∆ x

2
x,1‖L1(R). (3.7)
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As shown in Figure 3.2, the approximations indeed seem to form a Cauchy
sequence and are therefore convergent.

Next, we calculate the Monte-Carlo approximation of the variance of the
probability measures ν∆x

x,1 for different values of the mesh width. Figure 3.3
displays our results and indicate that the variance also seems to converge to
a sharp peak at the location of the shock.

Figure 3.3 – Approximate ensemble variance at time t = 1 with perturbation ampli-
tude α = β = 0.1 and different mesh widths.

Figure 3.4 – Approximate ensemble mean at time t = 1 with 800 mesh points for
different values of the amplitude of perturbation.

We also wish to explore the effect of the perturbation amplitude α and β on
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the convergence of the ensemble mean and variance. We therefore calculate
the Monte-Carlo approximation of the ensemble mean, denoted by ū∆x

x,1 of
the probability measures ν∆x

x,1 for different values of the perturbation α =
β. Figure 3.4 displays our results and indicates that this mean seems to
converge to the exact solution as α, β→ 0. To further verify this convergence,
we again calculate the L1-norm of the successive differences in the ensemble
mean and variance across decreasing values of α = β. As shown in Figure
3.5, the approximations indeed seem to form a Cauchy sequence and are
therefore convergent.

Figure 3.5 – Cauchy Rates for the ensemble mean and variance as a function of
amplitude of perturbation α = β.

Figure 3.6 – Approximate ensemble variance at time t = 1 with 800 mesh points for
different values of the amplitude of perturbation.

Finally, we calculate the Monte-Carlo approximation of the variance of the
probability measures ν∆x

x,1 for decreasing values of the perturbation ampli-
tude. Figure 3.6 displays our results and indicates that the variance seems
to vanish as α, β→ 0.
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3.3.2 One-Dimensional Euler Equations

Let ρ : R×R+ → R+, let p : R×R+ → R+, let u : R×R+ → R and
let E : R×R+ → R+ be functions which denote the density, pressure, one-
dimensional velocity and energy density of a compressible, inviscid fluid.
Then the compressible Euler equations in one dimension are given by

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x
(

ρu2/2 + p
)
= 0,

∂tE + ∂x
(
u(E + p)

)
= 0.

(3.8)

Of course (3.8) is not a closed system and we require an additional equation
relating the energy to the pressure and density. In the case of a polytropic,
ideal gas with adiabatic exponent γ, the equation of state is given by

E =
p

γ− 1
+

1
2

ρu2. (3.9)

For the sake of brevity we can write (3.8) in the more compact form

∂t u + ∂x( F) = 0 (3.10)

where

u =

 ρ
ρu
E

 , F =

 ρu
ρu2/2(

u(E + p)
)
 . (3.11)

We now consider the following Cauchy problem involving the Euler equa-
tions (3.10). Let (Ω,F , P) be a probability space, let X : Ω→ [−0.5, 0.5] and
Y : Ω→ [−0.5, 0.5] be independent, uniformly distributed random variables,
let α, β ∈ R be small constants and consider the Cauchy problem

∂tu + ∂x(F) = 0,
u(x, 0) = u0(x, ω)

(3.12)

where

u0(x, ω) =



 1 + αX(ω)

0 + αX(ω)

2.5 + αX(ω)

 if x < 0,

 0.125 + βY(ω)

0 + βY
0.25 + βY

 if x > 0.

(3.13)
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Thus the Cauchy problem (3.12) is essentially the sod-shock tube problem
with perturbed initial conditions. Once again we restrict our spatial com-
putational domain to the interval [−2, 2] and employ transparent boundary
conditions. We shall use Monte-Carlo simulations to estimate the mean and
variance of the approximate measure valued solutions to the associated MV
Cauchy problem and analyse the convergence of these statistical quantities
with respect to mesh width and the perturbation amplitudes. All results are
computed using 400 Monte-Carlo iterations and using a first order entropy
stable scheme with Rusanov-type numerical diffusion (see, e.g., [17]).

Figure 3.7 – Approximate ensemble mean at time t = 0.5 with perturbations α =
β = 0.05 and different mesh widths.

We denote by ū∆x
x, 1

2
the Monte-Carlo approximation of the mean of the prob-

ability measures ν∆x
x, 1

2
for different values of the mesh width. Figure 3.7 dis-

plays the ensemble mean of the density and indicates that this mean seems
to converge to the unperturbed solution as the number of mesh points is
increased. To further verify this convergence, we calculate the L1-norm of
the successive differences in the ensemble mean across the different mesh
widths:

‖ū∆x
x, 1

2
− ū∆ x

2
x, 1

2
‖L1(R). (3.14)

As shown in Figure 3.8, the approximations indeed seem to form a Cauchy
sequence and are therefore convergent.

Next, we calculate the Monte-Carlo approximation of the ensemble variance
of the probability measures ν∆x

x,1 for different values of the mesh width. Fig-
ure 3.9 displays our results and indicate that the variance also seems to
converge to a series of peaks corresponding to the location of the rarefaction
wave, the contact discontinuity and the shock wave.
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Figure 3.8 – Cauchy Rates for the ensemble mean of the density as a function of the
total number of mesh points for perturbation amplitude α = β = 0.05.

Figure 3.9 – Approximate ensemble variance with perturbations α = β = 0.05 and
different mesh widths.

Finally, we explore the effect of the perturbation amplitude α and β on the
convergence of the ensemble mean and variance. We therefore calculate
the Monte-Carlo approximation of the ensemble mean, denoted by ū∆x

x, 1
2

of

the probability measures ν∆x
x, 1

2
for different values of the perturbation α = β.

Figure 3.10 displays our results and indicates once again that the ensemble
mean of the density seems to converge to the unperturbed solution as α, β→
0. Figure 3.11 indicates that the L1-norm of the successive differences in the
ensemble approximations indeed seem to form a Cauchy sequence and are
therefore convergent.

In addition, figure (3.12) displays the Monte-Carlo approximation of the
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Figure 3.10 – Approximate ensemble mean at time t = 0.5 with 400 mesh points
and different values of the perturbation amplitude α = β.

Figure 3.11 – Cauchy Rates for the ensemble mean and ensemble variance of the
density as a function of the perturbation amplitude α = β with 400 mesh points.

ensemble variance of the probability measures ν∆x
x,1 for decreasing values of

the perturbation amplitude. The results indicate that the variance also seems
to vanish as α, β→ 0.

These two examples serve to demonstrate that our numerical results agree
with the theoretical results presented in the previous sections. Of course, the
consequence of this fact is not in itself of much importance since state-of-the-
art schemes such as the TECNO schemes presented by U. S. Fjordholm et al
[19] can always be used to solve these Cauchy problems with much greater
accuracy and much less computational power.

The utility of the EMV solution framework and the algorithm presented in
Section (3.2) however, lies in the fact that the ensemble mean, variance and
other statistical quantities of interest can converge under increasing mesh
width resolution and may remain stable under decreasing perturbation am-
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Figure 3.12 – Approximate ensemble variance at time t = 0.5 with 400 mesh points
and different values of the perturbation amplitude α = β.

plitudes even in cases where conventional schemes fail to produce numeri-
cal approximations that converge to an entropy solution. It is precisely this
property of approximate EMV solutions that was utilised by U. S. Fjordholm
et al [18] and it is precisely this property that we hope to take advantage
of when performing numerical simulations to explore the Carbuncle phe-
nomenon.
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Chapter 4

The Carbuncle Phenomenon in 1D

4.1 Numerical Experiments in 1D

The following numerical example was proposed by K. Kitamura, P. Roe and
F. Ismail [28]. While this is an extremely simplified version of the classical
Carbuncle phenomenon in 2D, it nevertheless serves to illustrate that state-
of-the-art entropy stable numerical schemes can exhibit numerical instability
even in such a simple situation.

We consider the one-dimensional Euler equations (3.10) in the case of a
steady shock and explore the effects of the shock location on the compu-
tational grid and the free-stream Mach number on the numerical solution.
The computational domain consists of a mesh of uniform width, divided
into exactly 50 cells with piecewise constant initial conditions for the left
(L : i ≤ 12) and right (R : i ≥ 14) states:

UL =

 1
1

1
γ(γ−1)M0

2 +
1
2

 , UR =

 f (M0)
1

g(M0)

γ(γ−1)M0
2 +

1
2 f (M0)

 (4.1)

where

f (M0) =

(
2

(γ + 1)M0
2 +

γ− 1
γ + 1

)−1

, g(M0) =
2γM0

2

γ + 1
− γ− 1

γ + 1
, (4.2)

and it can be checked that the states (5.7) satisfy the Rankine-Hugoniot con-
ditions across the shock.

The internal shock condition (M : i = 13) can then be deduced by following
the procedure proposed by Chauvat, Moschetta and Gressier [6]. We define
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4. The Carbuncle Phenomenon in 1D

the shock-position parameter ε = 0.0, 0.1, . . . 1. The intermediate state (M :
i = 13) that lies on the Hugoniot curve connecting UL and UR is then given
by

ρM = ρL + ε(ρR − ρL),
uM = uL + εu(uR − uL),
pM = pL + εp(pR − pL)

(4.3)

where

εu = 1− (1− ε)
(

1 + ε
M2

0 − 1
1 + (γ− 1)M2

0/2

)−1/2(
1 + ε

M2
0 − 1

1− 2γM2
0/(γ− 1)

)−1/2
,

εp = ε
(

1 + (1− ε)
γ + 1
γ− 1

M2
0 − 1
M2

0

)−1/2
.

(4.4)

We employ a fixed mass flux boundary condition at the outflow boundary:

(ρv)imax+1 = (ρv)0 = 1 (4.5)

and we prescribe zero gradient boundary conditions for the remaining vari-
ables at the outflow boundary and free-stream boundary conditions at the
inflow boundary. This choice of outflow boundary conditions might seem
non-intuitive but it ensures that the total mass in the computational domain
remains constant and therefore the shock position is fixed. Furthermore,
these boundary conditions also make sense from a physical point of view
since they try to capture the situation of a steady shock sitting in front of a
wall. Using transparent boundary conditions at the outflow is more difficult
to justify from a physical perspective and results in any numerical instability
essentially flowing through the outflow boundary. The resulting simulations
are therefore neither particularly useful nor interesting.

For the purpose of this experiment the free-stream Mach number is chosen
in the range 2 ≤ M0 ≤ 20. Our goal is to examine the stability of the numer-
ical schemes for different values of the shock-position parameter ε and the
free-stream Mach number M0. We employ a variety of first-order finite vol-
ume schemes including schemes that are widely accepted to be stable shock-
capturing methods. We use the original (linearised) Roe solver (see, e.g,
[32]), the Rusanov or local Lax-Friedrichs scheme (see, e.g., [32]), an entropy
stable scheme with Roe-type diffusion (RoeES) (see, e.g., [17]), an entropy
stable scheme with Rusanov-type diffusion (RusanovES)(see, e.g., [17]) and
the entropy consistent Roe scheme (RoeEC1) introduced by K. Kitamura, P.
Roe and F. Ismail (see, e.g.[28]) with diffusion parameter α = 0.2 and α = 0.8.
We categorise our numerical schemes in the following way
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4.1. Numerical Experiments in 1D

• We declare a numerical scheme to be 1D stable if the approximate
solution produced by the scheme converges to a steady state shock
solution for all values of ε and M0.

• We declare a numerical scheme to be 1D unstable if the approximate
solution produced by the scheme does not converge to a steady state
shock solution and instead forms a limit cycle for some value of ε and
M0.

All computations were performed using a CFL number of 1/3, which re-
sulted in a mesh-width to time-step ratio λ ≈ 0.25 and the simulations were
run for a minimum of 40, 000 time steps.

4.1.1 Results of the Numerical Experiments

Our results indicate that the stability of the shock depends on the numerical
scheme employed and the parameters ε and M0. Thus for example, the
Roe scheme seems to be stable for some choices of ε and M0 and unstable
for others while the Rusanov scheme seems to be stable for all values of ε
and M0. Table 4.1 displays the results of the stability tests for the different
schemes we have tested.

Scheme 1D Stability
Roe Unstable
RoeEC1 (α = 0.2) Unstable
RoeES Stable
RoeEC1 (α = 0.8) Stable
Rusanov Stable
RusanovES Stable

Table 4.1 – Summary of the 1D stability of different numerical schemes.

Scheme ε M0

Roe 0.2 20
RoeEC1 (α = 0.2) 0.5 20
RoeES 0.4 20
RoeEC1 (α = 0.8) 0.4 15
Rusanov 0.7 20
RusanovES 0.6 20

Table 4.2 – Concrete choice of the parameters ε and M0 for the purpose of our
experiments.
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Figure 4.1 – Unstable. Isodensity contour plots of the original Roe scheme for
ε = 0.2, M0 = 20 at 37000, 38000, 39000 and 40000 time steps.
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Figure 4.2 – Unstable. Isodensity contour plots of the RoeEC1 scheme for ε =
0.5, M0 = 20 at 37000, 38000, 39000 and 40000 time steps.

Even for this simplified 1D test case, we begin to see that entropy stability
is neither a necessary nor a sufficient condition for stable shock resolution.
Indeed as shown in Figure 4.1 and 4.2, for high Mach number M0, the origi-
nal Roe scheme and the entropy stable RoeEC1 (α = 0.2) are both unable to
resolve the steady shock in a stable manner and instead produced numerical

32



4.1. Numerical Experiments in 1D

approximations which form a limit cycle.

Furthermore, as shown in Figure 4.3 the shock solution produced by the
RoeES scheme, while stable, is not monotone and contains a significant spu-
rious overshoot.
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Figure 4.3 – Stable. Isodensity contour plots of the RoeES scheme for ε = 0.4, M0 =
20 at 37000, 38000, 39000 and 40000 time steps.
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Figure 4.4 – Stable. Isodensity contour plots of the RoeEC1 (α = 0.8) scheme for
ε = 0.4, M0 = 15 at 37000, 38000, 39000 and 40000 time steps.
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Figure 4.5 – Stable. Isodensity contour plots of the Rusanov scheme for ε =
0.7, M0 = 20 at 37000, 38000, 39000 and 40000 time steps.
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Figure 4.6 – Stable. Isodensity contour plots of the RusanovES scheme for ε =
0.6, M0 = 20 at 37000, 38000, 39000 and 40000 time steps.

On the other hand as shown in Figure 4.4, the RoeEC1 (α = 0.8) scheme
successfully resolve the steady shock in a minimally diffusive manner. The
Rusanov scheme and the RusanovES scheme also produce stable shock so-
lutions but these are significantly ’smeared out’. Figures 4.1-4.6 display iso-
density contour plots of each of the schemes we have tested for a specific
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4.1. Numerical Experiments in 1D

choice of the shock position parameter ε and the free-stream Mach number
M0 as given in Table 4.2.

A comprehensive breakdown of the results of this numerical experiment for
all possible values of M0 and ε can be found in [28].

Figure 4.7 – The error ‖ρ0 − ρn
∆x‖L1 vs. the number of time steps n for each numeri-

cal scheme for the specific choice of ε and M0 listed in Table 4.2.

A clearer picture can be obtained by plotting error residuals for each of the
experiments that we have performed. Figure 4.7 displays the L1-norm of
the difference between the initial condition and the approximate solution
density at each time step for each of the numerical schemes that we have
used. Clearly, both the original Roe scheme and the RoeEC1 (α = 0.2)
scheme are unable to resolve the shock in a stable manner and instead lead
to approximate solutions which seem to form a limit cycle. On the other
hand the error plots for the remaining schemes all converge to a fixed value
indicating convergence of the solution. In addition, Figure 4.8 displays the
L1-norm of the difference between successive solution approximations of the
density at each time step for each of the numerical schemes. This constitutes
further evidence that the Roe scheme and the RoeEC1 (α = 0.2) scheme are
unable to produce solution approximations that converge while the errors
for the remaining schemes quickly decay to zero.

As mentioned previously the specific choice of a fixed mass flux condition
at the outflow boundary is necessary to obtain this behaviour. As displayed
in Figure 4.9, the use of transparent outflow boundary conditions removes
the numerical instability and results in stable shock resolution.
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4. The Carbuncle Phenomenon in 1D

Figure 4.8 – The error ‖ρn+1
∆x − ρn

∆x‖L1 vs. the number of time steps n for each
numerical scheme for the specific choice of ε and M0 listed in Table 4.2.
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Figure 4.9 – Stable. Isodensity contour plots of the RoeEC1 (α = 0.2) scheme with
transparent outflow boundary conditions for ε = 0.5, M0 = 20 at 37000, 38000, 39000
and 40000 time steps.
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4.1. Numerical Experiments in 1D

In particular these numerical experiments illustrate that even entropy sta-
ble schemes can exhibit the Carbuncle phenomenon in 1D. In view of this
numerical evidence, the next logical task is to determine if there is an un-
derlying problem with the numerical methods we are using, which leads to
the numerical instability or if the framework of entropy solutions itself is
deficient. In case of the latter, we would expect to obtain stability and con-
vergence results for statistical quantities associated with the corresponding
EMV solutions. In order to answer this question therefore, we resort to the
framework of Entropy measure valued solutions and apply the algorithm
presented in Section 3.2 to attempt to resolve this numerical instability.

4.1.2 Numerical Experiments involving the MV Cauchy Problem

Experiment 1

We first consider the corresponding MV Cauchy problem involving the Euler
equations (3.10) by perturbing the initial conditions (5.7).

Let (Ω,F , P) be a probability space, let X : Ω → [−0.5, 0.5] be a uniformly
distributed random variable, let δ ∈ [0, 1] be a constant and consider the
same Cauchy problem introduced in Section (4.1) but with perturbed shock
position parameter given by

ε̃ = ε + δX. (4.6)

Figure 4.10 – Density plots of the ensemble mean and original solution using
RoeEC1 scheme for ε = 0.5, M0 = 20 at 37000, 38000, 39000 and 40000 time steps.

37



4. The Carbuncle Phenomenon in 1D

Figure 4.11 – Density plots of the ensemble mean and original solution using Roe
scheme for ε = 0.2, M0 = 20 at 37000, 38000, 39000 and 40000 time steps.

The remaining set up including the initial conditions and the boundary con-
ditions are left unchanged. We use Monte-Carlo simulations to estimate
the ensemble mean and variance of the approximate measure valued solu-
tions to the associated MV Cauchy problem and analyse the convergence
of these statistical quantities. Based on our results in Section 4.1 we are
only interested in the 1D unstable schemes i.e. the original Roe scheme and
the entropy consistent RoeEC1 scheme. As a concrete test case we consider
δ = 0.2, ε = 0.2, M = 20 for the Roe scheme and δ = 0.2, ε = 0.5, M = 20
for the RoeEC1 scheme. All results are computed using 400 Monte-Carlo
iterations.

Figure 4.10, which displays the density plot of the RoeEC1 scheme for ε = 0.5
and M0 = 20, clearly indicates that the RoeEC1 scheme does not produce ap-
proximate solutions that converge to the steady state shock solution. Indeed,
even after 30, 000 time steps, the solution has not converged and the shock
location continues to oscillate. Unfortunately, Figure 4.10 also indicates that
the ensemble mean also does not converge to a steady state shock solution.
Indeed the shock location of the ensemble mean of the density also contin-
ues to oscillate even after 35, 000 time steps. However, it does appear that
the oscillations of the shock position for the ensemble mean are qualitatively
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4.1. Numerical Experiments in 1D

smaller than the oscillations of the shock position for the single sample.

Figure 4.11 displays the density plot of the Roe scheme for ε = 0.2 and
M0 = 20 and the ensemble mean of the density for the corresponding MV
Cauchy problem. Once again we observe that the Roe scheme does not pro-
duce approximate solutions that converge to the steady state shock solution.
Furthermore, the ensemble mean also does not converge to a steady state
shock solution. The shock location of the ensemble mean of the density
continues to oscillate well after 30, 000 time steps. Interestingly Figure 4.11
again indicates that the oscillations of the shock position for the ensemble
mean are qualitatively smaller than the oscillations of the shock position for
the single sample.

We also analyse the ensemble variance of the density for both test cases.
Figure 4.12 displays the ensemble variance the density for both the RoeEC1
scheme and the Roe scheme. As expected while the variance does consist
of a sharp spike at the shock location for both test cases, the magnitude of
the spike oscillates considerably even after 35, 000 time steps. It is therefore
reasonable to conclude that the ensemble variance also does not converge to
a steady state.

Figure 4.12 – Ensemble variance of the entropy measure valued solution for the
RoeEC1 scheme and the original Roe scheme.
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4. The Carbuncle Phenomenon in 1D

Figure 4.13 – The error ‖ρn+1
∆x − ρn

∆x‖L1 vs. the number of time steps for the RoeEC1
scheme.

Figure 4.14 – The error ‖ρn+1
∆x − ρn

∆x‖L1 vs. the number of time steps for the original
Roe scheme.
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4.1. Numerical Experiments in 1D

The analysis of the error residuals for the two test cases confirms our conclu-
sions. Figure 4.13 displays the L1-norm of the difference between successive
solution approximations of the density at each time step for the RoeEC1
scheme. Two important points can immediately be inferred from the plot.
First, that the error for the ensemble mean of the density does not decay
immediately to zero although there is a visible trend towards a slow decay
and second, that the error residual of the ensemble mean is smaller than
the error residual of the original solution. Figure 4.14, which displays the
L1-norm of the difference between successive solution approximations of
the density at each time step for the original Roe scheme indicates a similar
result.

Figure 4.15 – The error ‖ρn+1
∆x − ρn

∆x‖L1 vs. the number of time steps for both 100
cells and 50 cells using the RoeEC1 scheme.

We next explore the effects of increasing the mesh width refinement on the
stability and convergence of the ensemble mean and variance for the test
case involving the RoeEC1 scheme. In particular, we repeat the same exper-
iment with a computational domain consisting of 100 cells i.e. with mesh
width exactly halved. Figure 4.15 displays the L1-norm of the difference
between successive solution approximations of the ensemble mean of the
density at each time step for both 100 cells and 50 cells. Clearly, the er-
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4. The Carbuncle Phenomenon in 1D

Figure 4.16 – Density plots of the ensemble mean using the RoeEC1 scheme for both
100 cells and 50 cells at 37000, 38000, 39000 and 40000 time steps.

ror residual for 100 cells is smaller than the error residual for 50 cells and
this seems to indicate that ensemble mean of the density may converge to a
steady state shock solution as the mesh width is refined. However, it is im-
portant to note that error residual still oscillates and does not immediately
decay to zero. It is not immediately clear therefore, if this decrease in the
error residual is due to the fact that the shock is more sharply resolved and
therefore the oscillation in shock position leads to a smaller error residual
or if this decrease in the error residual is due to a genuine convergence of
the ensemble mean to a steady state solution as the mesh width is refined.

Figure 4.16 displays the ensemble mean of the density for both 100 and 50
cells. As expected the shock is more sharply resolved in the case of 100 cells
but once again, it is clear that the shock position is not stable and instead
oscillates even after 35, 000 time steps.

A similar result is obtained for the ensemble variance of the density. Figure
4.17 displays the ensemble variance for both 100 and 50 cells. Once again we
observe that while the spike in the variance at the shock location is sharper
for the case of 100 cells, there is nonetheless no convergence of the variance
to a steady state. It is thus reasonable to conclude that while the error
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4.1. Numerical Experiments in 1D

Figure 4.17 – Ensemble variance of the entropy measure valued solution for both
100 cells and 50 cells using the RoeEC1 scheme.

residual does indeed decrease as the mesh is refined, both the ensemble
mean and the ensemble variance do not converge to a steady state solution.
In view of theoretical results (see, e.g., [18]), this is an important indication
that the 1D numerical instability we are observing has, at least partially,
numerical origin.

Finally we explore the effects of decreasing the perturbation parameter δ
on the stability of the ensemble mean and variance of the measure valued
entropy solution. Theoretical results once again imply (see, e.g., [18]) that de-
creasing the parameter δ would lead to convergence of the ensemble mean
and variance of the approximate measure entropy valued solutions. Con-
versely, if the mean and variance are not stable under decreasing values of
the perturbation parameter δ, this would be another important indication
that the Carbuncle phenomenon in 1D has a numerical origin.

Figure 4.18 displays the L1-norm of the difference between successive solu-
tion approximations of the ensemble mean of the density at each time step
for different values of the parameter δ. Clearly, the error residual does not
decrease as the value of δ is decreased. Indeed the error residual actually
seems to increase as the value of δ is decreased and this implies that the en-
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4. The Carbuncle Phenomenon in 1D

Figure 4.18 – The error ‖ρn+1
∆x − ρn

∆x‖L1 vs. the number of time steps for different
values of the parameter δ using the Roe scheme.

semble mean is not stable under decreasing amplitudes of perturbation. We
also remark that the error residuals for all values of δ are characterised by
large oscillations which further implies that in each case the ensemble mean
still suffers from numerical instability and does not converge to a steady
state shock solution.

Plots of the ensemble mean of the density support our conclusion. Figure
4.19 displays the ensemble mean of the density for different values of δ. We
immediately observe two important points. First, for each value of delta the
shock position of the mean still suffers from instability and consequently the
mean does not converge to a steady state shock solution even after 35, 000
time steps. Second, as the value of δ is decreased there is little qualitative
decrease in the amplitude of oscillations of the shock position. This rein-
forces our conclusion that there is no convergence of the ensemble mean of
the approximate EMV solution to a steady state as δ is decreased.

A similar result is obtained for the ensemble variance of the density. Figure
4.20 displays the ensemble variance for different values of δ. We observe that
while the variance does decrease as expected as the value of δ is decreased,
there is nonetheless no convergence of the variance for any value of δ to a
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Figure 4.19 – Density plots of the ensemble mean for different values of the param-
eter δ using the Roe scheme at 37000, 38000, 39000 and 40000 time steps.

steady state even after 35, 000 time steps. It is thus reasonable to conclude
that both the ensemble mean and the ensemble variance are not stable under
decreasing values of the amplitude of perturbation δ. We therefore feel
confident in our conclusion that there is no convergence of the ensemble
mean and variance of the density as the value of δ is decreased.

In light of the results of these numerical experiments we feel that the follow-
ing three conclusions can be drawn:

• The error residual of the ensemble mean of the density of the corre-
sponding measure valued Cauchy problem is smaller than the error
residual of the solution to the original Cauchy problem.

• The ensemble mean and variance still suffer from numerical instability
and therefore do not converge to a steady state solution even after
30, 000 time steps.

• There does not seem to be any convergence of the ensemble mean and
variance either as the mesh width is refined or as the value of δ is
decreased.

We feel that this supports the prevalent view in the literature that the origin
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4. The Carbuncle Phenomenon in 1D

Figure 4.20 – Ensemble variance of the entropy measure valued solution for differ-
ent values of the parameter δ using the Roe scheme.

of the 1D carbuncle phenomenon is numerical in nature to a large degree.

Experiment 2

We now consider the following MV Cauchy problem involving the Euler
equations (3.10) by perturbing the initial conditions (5.7).

Let (Ω,F , P) be a probability space, let Θ : Ω → [0, 25] be a uniformly dis-
tributed random variable, let κ ∈ R be a constant and consider the Cauchy
problem (5.7) with initial conditions given by

U0(x) = UL + UR
2√
π

∫ κΘ(x+1/4)

0
e−t2

dt (4.7)

where

UL =



1 + f (M0)

2

1

1
γ(γ−1)M0

2 +
1
2 +

g(M0)

γ(γ−1)M0
2 +

1
2 f (M0)

2

 , (4.8)
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UR =



f (M0)− 1
2

1
g(M0)

γ(γ−1)M0
2 +

1
2 f (M0)

− 1
γ(γ−1)M0

2 +
1
2

2

 , (4.9)

and the internal shock position (M : i = 13) is chosen according to the
conditions (4.3).
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Figure 4.21 – Isodensity contour plots of the initial conditions for different realisa-
tions of the random variable Θ along with the original non-random initial condi-
tions.

Figure 4.21 displays the isodensity contour plots for the initial conditions
4.7 for different values of κ · Θ along with the isodensity contour plot for
the initial conditions 5.7 with the parameter values ε = 0.5, M0 = 20. As
can be seen, the new initial conditions result in a more ’smeared’ version of
the shock. Clearly, in the limit κ → ∞ the perturbed initial conditions 4.7
approach the original initial conditions 5.7. The remaining set up including
the boundary conditions is left unchanged. Once again we use Monte-Carlo
simulations to estimate the ensemble mean and variance of the approximate
measure valued solutions to the associated MV Cauchy problem. Our aim
once again is to analyse the stability and convergence properties of these
statistical quantities of interest. In order to be consistent we focus only on
the specific parameter values chosen in the Experiment 1. Specifically, we
consider the two test cases consisting of κ = 10, ε = 0.2, M = 20 for the Roe
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Figure 4.22 – Density plots of the ensemble mean and original solution using the
RoeEC1 scheme for ε = 0.5, M0 = 20 at 37000, 38000, 39000 and 40000 time steps.

scheme and κ = 10, ε = 0.5, M = 20 for the RoeEC1 scheme. All results are
computed using 400 Monte Carlo iterations.

Figure 4.22, which displays the density plot of the RoeEC1 scheme for ε = 0.5
and M0 = 20, clearly indicates that the RoeEC1 scheme does not produce ap-
proximate solutions that converge to the steady state shock solution. Indeed,
even after 30, 000 time steps, the solution has not converged and the shock
location continues to oscillate. Figure 4.22 also indicates that the ensemble
mean also does not converge to a steady state shock solution. Indeed the
shock location of the ensemble mean of the density also continues to oscillate
even after 35, 000 time steps. Furthermore, it appears that the oscillations of
the shock position for the ensemble mean are qualitatively similar to the
oscillations of the shock position for the original solution.

Figure 4.23 displays the density plot of the Roe scheme for ε = 0.2 and
M0 = 20 and the ensemble mean of the density for the corresponding MV
Cauchy. Once again we observe that the Roe scheme does not produce ap-
proximate solutions that converge to the steady state shock solution. Inter-
estingly however, the ensemble mean does seem to consist of a much more
stable shock location. There is only a slight difference in the intermediate
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Figure 4.23 – Density plots of the ensemble mean and original solution using the
Roe scheme for ε = 0.2, M0 = 20 at 37000, 38000, 39000 and 40000 time steps.

shock location at 37, 000, 38, 000, 39, 000 and 40, 000 time steps. This is a
very interesting result that will be explored in more detail below.

We also analyse the ensemble variance of the density for both test cases. Fig-
ure 4.24 displays the ensemble variance of the density for both the RoeEC1
scheme and the Roe scheme. While the variance does consist of a sharp
spike at the shock location for both cases, the magnitude of the spike os-
cillates considerably even after 35, 000 time steps. In particular this seems
to imply that the ensemble variance does not converge to a steady state
for either the RoeEC1 scheme or the Roe scheme. This is particularly in-
teresting in light of the results of the ensemble mean for the Roe scheme
because it seems to imply that the apparent convergence of the ensemble
mean is misleading. In fact it is our contention that the reason the ensemble
mean appears to converge in the case of the Roe scheme is because the self-
reinforcing nature of the strong shock causes the initial conditions to form a
more sharply resolved shock as the system evolves in time and this sharply
resolved shock does not suffer from an unstable shock location. This issue
will be explored in detail below by considering the effects of increasing the
value of κ on the convergence of the ensemble mean and variance for the
Roe scheme.
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4. The Carbuncle Phenomenon in 1D

Figure 4.24 – Ensemble variance of the entropy measure valued solution for the
RoeEC1 scheme and the original Roe scheme.

The analysis of the error residuals for the two test cases confirms our conclu-
sions. Figure 4.25 displays the L1-norm of the difference between successive
solution approximations of the ensemble mean of the density at each time
step for the RoeEC1 scheme. Once more, two important points can immedi-
ately be inferred from the plot. First, that the error for the ensemble mean
of the density does not converge to zero and in contrast with Experiment
1, there is no visible trend towards a slow decay, and second that the er-
ror residual of the ensemble mean is smaller than the error residual of the
original solution. Figure 4.26, which displays the L1-norm of the difference
between successive solution approximations of the ensemble mean of the
density at each time step for the original Roe scheme indicates a qualita-
tively similar result although in this case the error residual for the ensemble
mean is significantly smaller than the error residual for the original solution.
This is to be expected in view of the results of the ensemble mean displayed
in Figure 4.23.
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4.1. Numerical Experiments in 1D

Figure 4.25 – The error ‖ρn+1
∆x − ρn

∆x‖L1 vs. the number of time steps for the RoeEC1
scheme.

Figure 4.26 – The error ‖ρn+1
∆x − ρn

∆x‖L1 vs. the number of time steps for the Roe
scheme.

Similar to Experiment 1, we next explore the effects of increasing the value of
the parameter κ for the test case involving the RoeEC1 scheme. In particular
we repeat the same experiment for κ = 20. As mentioned previously, theo-
retical results (see, e.g., [18]) imply that increasing the parameter κ should
lead to convergence of the ensemble mean and variance of the approximate

51



4. The Carbuncle Phenomenon in 1D

Figure 4.27 – The error ‖ρn+1
∆x − ρn

∆x‖L1 vs. the number of time steps for κ = 10 and
κ = 20 using the RoeEC1 scheme.

entropy measure valued solutions and conversely, if the ensemble mean and
variance are not stable under increasing values of the perturbation parame-
ter κ, this would be another strong indication that carbuncle phenomenon
in 1D has a numerical origin. Figure 4.27 displays the L1-norm of the dif-
ference between successive solution approximations of the ensemble mean
of the density at each time step for both κ = 20 and κ = 10. Clearly, the
error residual for κ = 20 is larger than the error residual for κ = 10 and this
implies that the ensemble mean is not stable under increasing values of the
parameter κ.

Figure 4.28 displays the ensemble mean of the density for both κ = 20 and
κ = 10. As expected the shock position continues to suffer from instability
and the ensemble mean has not converged for either case even after 30, 000
time steps. Furthermore, there is little qualitative difference in the magni-
tude of the oscillations of the shock position.

A similar result is obtained for the ensemble variance of the density. Figure
4.29 displays the ensemble variance for both κ = 20 and κ = 10. Once
again we observe that in both cases there is no convergence of the variance
to a steady state. It is thus reasonable to conclude that both the ensemble
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4.1. Numerical Experiments in 1D

Figure 4.28 – Density plots of the ensemble mean for κ = 10 and κ = 20 using the
RoeEC1 scheme at 37000, 38000, 39000 and 40000 time steps.

mean and the ensemble variance do not converge to a steady state solution
if the value of κ is increased. This supports our conclusion that the ensemble
mean and variance of the approximate measure valued solution continue to
suffer from 1D instability and are not stable under decreasing amplitudes
of perturbations.

In light of the results of the RoeEC1 scheme, we also explore the effects of
increasing the parameter κ on the convergence of the ensemble mean and
variance of the approximate measure valued entropy solution produced by
the original Roe scheme. Once again, we would deduce from theoretical
results (see, e.g., [18]) that the ensemble mean and variance should be stable
with respect to an increase in the parameter κ. Unfortunately, this does not
appear to be the case.

Figure 4.30 displays the L1-norm of the difference between successive solu-
tion approximations of the ensemble mean of the density at each time step
for κ = 20 and κ = 10. Clearly, the error residual does not decrease as the
value of κ is decreased and in fact increases considerably. While there is a
gradual decay of the error residual, we feel that this does not disprove our
basic conclusion that there is no convergence of the mean of the entropy
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4. The Carbuncle Phenomenon in 1D

Figure 4.29 – Ensemble variance of the entropy measure valued solution for κ = 10
and κ = 20 using the RoeEC1 scheme at 37000, 38000, 39000 and 40000 time steps.

measure valued solution as κ is increased. Once more we remark that the
error residuals for both values of κ are characterised by large oscillations
which implies that in each case the ensemble mean still suffers from numer-
ical instability and does not converge to a steady state shock solution even
after 30, 000 time steps.

An analysis of the ensemble mean of the density supports our conclusion.
Figure 4.31 displays the ensemble mean of the density for κ = 20 and κ = 10.
We immediately observe observe that the shock position instability is much
larger for the case κ = 20, which is in agreement with the results of the error
residuals displayed in Figure 4.30. Indeed, the ensemble mean for the case
κ = 20 continues to suffer from shock position instability even after 35, 000
time steps. This reinforces our conclusion that there is no convergence of
the mean of the entropy measure valued solution to a steady state as κ is
increased.

A similar result is obtained for the ensemble variance of the density. Figure
4.32 displays the ensemble variance for κ = 20 and κ = 10. We observe that
while the spike in the variance is sharper for the case κ = 20 decrease as
expected as the value of κ is decreased, there is nonetheless no convergence
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4.1. Numerical Experiments in 1D

Figure 4.30 – The error ‖ρn+1
∆x − ρn

∆x‖L1 vs. the number of time steps for κ = 10 and
κ = 20 using the Roe scheme.

of the variance for either value of κ to a steady state even after 35, 000 time
steps. It is thus reasonable to conclude that both the ensemble mean and the
ensemble variance do not converge to a steady state solution as the value of δ
is decreased. We therefore feel confident in our conclusion that the ensemble
mean and variance of the approximate entropy measure valued solution are
not stable under increasing values of the perturbation parameter κ.

To summarise, we feel that the following conclusions can be drawn in light
of the results of Experiment 2.

• The error residual of the ensemble mean of the density of the corre-
sponding measure valued Cauchy problem is smaller than the error
residual of the solution to the original Cauchy problem.

• The ensemble mean and variance still suffer from numerical instability
and therefore do not converge to a steady state solution even after
30, 000 time steps.

• There does not seem to be any convergence of the ensemble mean
and variance as the value of κ is increased. Instead the error residuals
imply that the mean and variance are even more unstable for higher
values of κ.
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4. The Carbuncle Phenomenon in 1D

Figure 4.31 – Density plots of the ensemble mean for κ = 10 and κ = 20 using the
Roe scheme at 37000, 38000, 39000 and 40000 time steps.

Figure 4.32 – Ensemble variance of the entropy measure valued solution for κ = 10
and κ = 20 using the Roe scheme at 37000, 38000, 39000 and 40000 time steps.
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In summary, the results of Experiment 1 and Experiment 2 both seem to
support the conclusion that the 1D carbuncle phenomenon cannot be com-
pletely resolved simply by considering a corresponding MV Cauchy prob-
lem and calculating the ensemble mean and ensemble variance. While the
results of our numerical experiments do indicate that both the mean and
variance are somewhat more stable than the original solutions, these sta-
tistical quantities continue to suffer from numerical instability and do not
converge to a steady state shock solution. The failure of the entropy mea-
sure valued solution framework in resolving this instability seems to support
the prevalent view in the literature that the origin of the 1D carbuncle phe-
nomenon is numerical to a significant extent and is related to insufficient
numerical diffusion. Interestingly the RoeEC1 scheme, which is not only an
entropy stable scheme but also an entropy consistent scheme also suffers from
this numerical instability. Therefore our conclusion seems to imply that en-
tropy stability or indeed entropy consistency is not a sufficient condition
for stable shock resolution for hypersonic flows even in the framework of
entropy measure valued solution. It has already been established that the
original Rusanov scheme, which is not entropy stable, does not display the
1D carbuncle phenomenon. We can therefore conclude that entropy stability,
which is a weaker condition that entropy consistency, is neither a sufficient
nor a necessary condition for stable shock resolution for hypersonic flows.
This is an unfortunate conclusion to draw in light of the many advantages
of the entropy measure valued solution framework.
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Chapter 5

The Carbuncle Phenomenon in 1-1/2D

5.1 Numerical Experiments in 1-1/2D

The next step in our analysis is to consider a so-called one-and-one-half-
dimensional problem involving the two-dimensional Euler equations and
consisting of a steady normal shock. This is essentially a 2D version of
the 1D Carbuncle phenomenon that we have considered in Chapter 4 but
it is simpler than the full fledged 2D Carbuncle phenomenon consisting of
hypersonic flow past a circular cylinder. This example was first developed
by J. J. Quirk [36] and expanded on by, e.g., M. Dumbser, J. Moschetta and
J. Gressier [13]. More recently K. Kitamura, P. Roe and F. Ismail [28], per-
formed a very comprehensive series of experiments involving this problem
and for the purpose of this thesis, we follow their example.

Let ρ : R × R+ → R+, let p : R × R+ → R+, let u : R × R+ → R, let
v : R×R+ → R and let E : R×R+ → R+ be functions which denote the
density, pressure, x-directional velocity, y-directional velocity and energy
density of a compressible, inviscid fluid respectively. Then the compressible
Euler equations in two dimension are given by

∂t u + ∂x( F) + ∂y(G) = 0 (5.1)

where

u =


ρ

ρu
ρv
E

 , F =


ρu

ρu2/2 + p
ρuv(

u(E + p)
)
 , G =


ρv

ρuv
ρv2/2 + p(
v(E + p)

)
 , (5.2)

and the equation of state is given by
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5. The Carbuncle Phenomenon in 1-1/2D

E =
p

γ− 1
+ 1/2ρu2 + 1/2ρv2. (5.3)

The computational domain consists of a uniform 25× 25 grid with piecewise
constant initial conditions for the left (L : i ≤ 12) and right (R : i ≥ 14) states:

UL =


1
1
0

1
γ(γ−1)M0

2 +
1
2

 , UR =


f (M0)

1
0

g(M0)

γ(γ−1)M0
2 +

1
2 f (M0)

 (5.4)

where

f (M0) =

(
2

(γ + 1)M0
2 +

γ− 1
γ + 1

)−1

, g(M0) =
2γM0

2

γ + 1
− γ− 1

γ + 1
, (5.5)

and the internal shock condition (M : i = 13) is calculated using the condi-
tion (4.3).

Thus, the setup for this 1− 1/2D problem is very similar to the setup for
the 1D problem. Following K. Kitamura, P. Roe and F. Ismail [28], the free-
stream Mach number M0 is set equal to 6.0 and the boundary conditions are
chosen to be periodic in the y-direction and identical to the 1D boundary
conditions in the x-direction. However, we depart from the example of K.
Kitamura, P. Roe and F. Ismail [28] by introducing a very small perturba-
tion of 10−14 in a single, randomly chosen cell upstream of the shock. This
introduces a source of multidimensional instability in the problem which
should lead to numerical instability that is qualitatively different from 1D
instability.

Similar to the 1D case, our first goal is to examine the stability of the
previously introduced numerical schemes for different values of the shock-
position parameter ε. We categorise our numerical schemes in the following
way:

• We declare a numerical scheme to be 1− 1/2D stable if the approximate
solutions produced by the scheme converge to a steady state shock
solution for all values of ε.

• We declare a numerical scheme to be 1− 1/2D unstable type 1 if the
approximate solutions produced by the scheme do not converge to
a steady state shock solution and instead oscillate and form jagged
spikes for some value of ε.
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5.1. Numerical Experiments in 1-1/2D

• We declare a numerical scheme to be 1− 1/2D unstable type 2 if the ap-
proximate solutions produced by the scheme either diverge completely
or evolve to a shock-free solution.

All computations were performed using a CFL number of 1/3, which re-
sulted in a mesh-width to time-step ratio λ ≈ 0.25 and the simulations were
run for a minimum of 20, 000 time steps.

5.1.1 Results of the Numerical Experiments

As expected our results indicate that the stability of the shock depends on
the numerical scheme employed and the value of the parameter ε. Thus for
example, the Roe scheme seems to be stable for some choices of ε and M0
and unstable for others while the Rusanov scheme seems to be stable for all
values of ε and M0. Table 5.1 displays the results of the stability tests for the
different schemes we have tested.

Scheme 1− 1/2D Stability
RoeEC1 (α = 0.2) Unstable Type 1
RoeEC1 (α = 0.8) Unstable Type 2
Roe Unstable Type 2
RoeES Stable
Rusanov Stable
RusanovES Stable

Table 5.1 – Summary of the 1− 1/2D stability of different numerical schemes.

Scheme ε M0

RoeEC1 (α = 0.2) 0.7 6
RoeEC1 (α = 0.8) 0.4 6
Roe 0.2, 0.5 6
RoeES 0.4 6
Rusanov 0.7 6
RusanovES 0.6 6

Table 5.2 – Concrete choice of the parameters ε and M0 for the purpose of our
experiments.

Our results indicate that the numerical schemes that are 1D unstable are
also 1− 1/2D unstable. As shown in Figure 5.1 and Figure 5.2 the RoeEC1
(α = 0.2) scheme for instance displays numerical instability in the form of
oscillating spikes downstream of the shock which is qualitatively different
and indeed much worse than the simple 1D shock instability observed in the
previous section. All figures presented in this section were obtained using a
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5. The Carbuncle Phenomenon in 1-1/2D

specific choice of the shock position parameter ε as given in Table 5.2.
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Figure 5.1 – Unstable Type 1. Density plots of the RoeEC1 (α = 0.2) scheme for
ε = 0.7 at 37000, 38000, 39000 and 40000 time steps.
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Figure 5.2 – Unstable Type 1. Isodensity contour plots of the RoeEC1 (α = 0.2)
scheme for ε = 0.7 at 37000, 38000, 39000 and 40000 time steps.

Figure 5.3 and Figure 5.4 display the the density and isodensity contour
plots respectively of the approximate solutions produced by the RoeEC1
(α = 0.8) scheme. In a significant departure from the results of the 1D

62



5.1. Numerical Experiments in 1-1/2D

stability tests, the RoeEC1 (α = 0.8) scheme, which is 1D stable is completely
unstable in 1− 1/2D and leads to approximate solutions that diverge. This is
in agreement with the results of K. Kitamura, P. Roe and F. Ismail [28] who
point out that the RoeEC1 (α = 0.8) is unstable in higher dimensions.

0.5
0

400 Time Steps

-0.5-0.5

0

6

8

0

2

4

0.5

0.5
0

600 Time Steps

-0.5-0.5

0

6

0

2

4

8

0.5

0.5
0

800 Time Steps

-0.5-0.5

0

5

0

10

0.5

0.5
0

1000 Time Steps

-0.5-0.5
0

0

25

20

15

10

5

0.5

Figure 5.3 – Unstable Type 2. Density plots of the RoeEC1 (α = 0.8) scheme for
ε = 0.5 at 37000, 38000, 39000 and 40000 time steps.
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The results for the Roe scheme are extremely interesting. Figure 5.5 and
Figure 5.6 display the density and the isodensity contour plots respectively
of the approximate solution produced by the Roe scheme for ε = 0.2. The
approximate solution quickly evolves to a shock-free state and therefore the
Roe scheme is 1− 1/2D unstable of type 2. On the other hand as displayed
in Figure 5.7 and Figure 5.8 the approximate solutions for the case ε = 0.5
display numerical instability in the form of spikes similar to the RoeEC1
scheme. Thus the form of 1− 1/2D instability in the case of the Roe scheme
depends on the value of the parameter ε = 0.5.

On the other hand as shown in Figures 5.9-5.11, the remaining schemes
are able to successfully resolve the steady shock and are therefore 1− 1/2D
stable. We observe however that as expected the Rusanov scheme and
the RusanovES scheme are more dissipative than the RoeES scheme. Fur-
thermore, the RoeES scheme, while 1− 1/2D stable, nevertheless produces
solutions with significant overshoot. This is a known problem associated
with the RoeES scheme and as observed by F. Ismail and P.Roe [24] is likely
caused due to insufficient entropy dissipation at the shock.

As with the 1D numerical experiments, a complete breakdown of the results
of this 1 − 1/2D numerical experiment for all possible values of ε can be
found in [28].

5.1.2 A Possible Case of Even-Odd Decoupling?

In view of the results of Section 5.1.1 it is worth exploring whether the
origin of the 1− 1/2D numerical instability of type 1, which results in os-
cillating spikes is caused by some form of even-odd decoupling. This is a
well known numerical problem that arises for example when solving for the
pressure field of the incompressible Navier-Stokes equations (see, e.g., [30])
and is manifested as an oscillatory ’checkerboard’ distribution of the pres-
sure field. In order to explore this idea further, we perform the following
simple experiment.

We consider the same 1 − 1/2D Cauchy problem introduced in Section 5
but with one fundamental change. Instead of a normal shock aligned in
the x-direction, we consider a sinusoidal shock position. More specifically,
instead of fixing the value of the shock location parameter ε for each cell in
the y-direction, we instead define the shock location as

ε(y) = 1/2
(
1 + sin(τπy + Θπ)

)
(5.6)

where τ is a frequency parameter that changes the period of the sinusoidal
function and Θ is a [0, 1]-uniformly distributed random variable which intro-
duces a source of randomness across different simulations. Figure 5.12 and

64



5.1. Numerical Experiments in 1-1/2D

0.5
0

500 Time Steps

-0.5-0.5

0

6

8

0

2

4

0.5

1

2

3

4

5

6

0.5

1000 Time Steps

0
-0.5-0.5

0

6

0

2

8

4

0.5

1

2

3

4

5

6

0.5

1500 Time Steps

0
-0.5-0.5

0

20

0

30

10

0.5

1

2

3

4

5

6

0.5

2000 Time Steps

0
-0.5-0.5

0

50

0

100

0.5

1

2

3

4

5

6

Figure 5.5 – Unstable Type 2. Density plots of the original Roe scheme for ε = 0.2
at 37000, 38000, 39000 and 40000 time steps.
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Figure 5.6 – Unstable Type 2. Isodensity contour plots of the original Roe scheme
for ε = 0.2 at 37000, 38000, 39000 and 40000 time steps.

Figure 5.13 display the initial isodensity contour plots for this experiment
for the values τ = 4 and τ = 20 respectively and for different realisations of
the random variable Θ. Once again we employ a fixed mesh-width to time-
step ratio λ = 0.25 and perform all simulations for a minimum of 20, 000
time steps using the RoeEC1 (α = 0.2).
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Figure 5.7 – Unstable Type 1. Density plots of the original Roe scheme for ε = 0.5
at 37000, 38000, 39000 and 40000 time steps.
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Figure 5.8 – Unstable Type 1. Isodensity contour plots of the original Roe scheme
for ε = 0.5 at 37000, 38000, 39000 and 40000 time steps.

Our goal is to explore the effects of increasing the value of the frequency
parameter τ on the approximate solutions produced by the RoeEC1 (α = 0.2)
scheme. If the 1− 1/2D numerical instability is indeed caused by even-odd
decoupling we would expect to observe that the low frequency test case
and the high frequency test case produce approximate solutions that are
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Figure 5.9 – Stable. Isodensity contour plots of the RoeES scheme for ε = 0.4 at
37000, 38000, 39000 and 40000 time steps.
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Figure 5.10 – Stable. Isodensity contour plots of the Rusanov scheme for ε =
0.7, M0 = 20 at 37000, 38000, 39000 and 40000 time steps.

characterised by low and high frequency spikes respectively.

Figure 5.14 and Figure 5.15 display the isodensity contour plots after 8000
time steps for the values τ = 4 and τ = 20 respectively and for different re-
alisations of the random variable Θ. As expected the approximate solutions
display oscillating spikes but the frequency of these oscillations does not cor-
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Figure 5.11 – Stable. Isodensity contour plots of the RusanovES scheme for ε =
0.6, M0 = 20 at 37000, 38000, 39000 and 40000 time steps.

respond to the frequency parameter τ. Specifically, a high frequency shock
location does not produce high frequency oscillations and a low frequency
shock location does not produce low frequency oscillations. This indicates
that the origin of the 1− 1/2D is in fact not due to even-odd decoupling.

5.1.3 Numerical Experiments involving the 1− 1/2D MV Cauchy
Problem

Experiment 1

We consider the corresponding 1− 1/2D MV Cauchy problem involving the
Euler equations (5.1) by perturbing the initial conditions (5.4).

Let (Ω,F , P) be a probability space, let X : Ω → [−0.5, 0.5] be a uniformly
distributed random variable, let δ ∈ [0, 1] be a constant and consider the
same Cauchy problem introduced in Section (5.1) but with perturbed shock
position parameter given by

ε̃ = ε + δX. (5.7)

The remaining set up including the initial conditions and the boundary con-
ditions are left unchanged. We again use Monte-Carlo simulations to esti-
mate the mean and variance of the approximate entropy measure valued
solutions to the associated 1− 1/2D MV Cauchy problem and analyse the
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Figure 5.12 – Initial isodensity contour plots for τ = 4 and different realisations of
the random variable Θ.
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Figure 5.13 – Initial isodensity contour plots for τ = 20 and different realisations of
the random variable Θ.
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Figure 5.14 – Isodensity contour plots for τ = 4 and different realizations of the
random variable Θ after 8000 time steps.
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Figure 5.15 – Isodensity contour plots for τ = 20 and different realizations of the
random variable Θ after 8000 time steps.
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convergence of these statistical quantities. Based on our results in Section
5.1.1 we are interested primarily in the entropy consistent RoeEC1 (α = 0.2)
scheme since this is the only 1− 1/2D unstable scheme of type 1. It is obvi-
ously too much to expect numerical instability of type 2 to be resolved by
considering the corresponding MV Cauchy problem. For the purpose of this
section we consider the test case involving RoeEC1 (α = 0.2) with parame-
ter values δ = 0.2, ε = 0.7, M0 = 6. All results were computed using 400
Monte-Carlo iterations.

Figure 5.16 and Figure 5.17 display the density plot and the isodensity con-
tour plots respectively of the ensemble mean of the approximate entropy
measure valued solution produced by the RoeEC1 scheme. The results indi-
cate that the ensemble mean does not suffer from any form of the 1− 1/2D
instability and indeed there is no visible evidence of oscillating spikes which
were observed in the single samples. Nevertheless, a close examination
reveals that the shock location is still slightly unstable and therefore the
ensemble mean still suffers from the original 1D instability. This is an ex-
tremely interesting result because it seems to imply that while the entropy
measure valued solution framework is incapable of resolving 1D numerical
instability, it is nevertheless remarkably successful at resolving the more se-
vere 1− 1/2D numerical instability. This suggests that there is a significant
difference between the 1D and 1− 1/2D forms of numerical instability.

For a more complete analysis, we also consider the ensemble variance of the
ensemble variance of the density of the measure valued entropy solution
produced by the RoeEC1 scheme. As displayed in Figure 5.18, the variance
consists of a smaller spike at the shock location and a larger spike at the
outflow boundary. The spike in the variance at the outflow boundary is of
course caused by oscillating spikes due to the 1− 1/2D numerical instability
so this result is to be expected. We observe that the variance at the shock
location does oscillate slightly, which is likely due to the unresolved 1D
shock instability but the variance at the outflow appears stable. This result
therefore also supports out conclusion that while 1D numerical instability
is not completely resolved, the entropy measure valued solution framework
is nevertheless successful at resolving the more severe 1− 1/2D numerical
instability.

The analysis of the error residual strongly supports our conclusion. Figure
5.19 displays the L1-norm of the difference between the initial condition and
the ensemble mean of the density at each time step for the RoeEC1 scheme.
We observe that the error of the ensemble mean is significantly smaller than
the error of the original solution. Indeed, by comparing to Figure 4.7 we
immediately observe that the error residual for the ensemble mean is in
fact lower than the error residual of both the Rusanov and the RusanovES
scheme. Furthermore, while the error residual still suffers from oscillations,
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Figure 5.16 – Density plots of the ensemble mean using the RoeEC1 scheme at 21000,
22000, 23000 and 24000 time steps.
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Figure 5.17 – Isodensity contour plots of the ensemble mean using the RoeEC1
scheme at 21000, 22000, 23000 and 24000 time steps.
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Figure 5.18 – Contour plots of the ensemble variance of the density using the
RoeEC1 scheme at 21000, 22000, 23000 and 24000 time steps.

these are significantly smaller in magnitude. We therefore feel confident in
concluding that apart from some slight shock position instability, the ensem-
ble mean and variance are much more stable and do not suffer from any
1− 1/2D instability.

In order to shed further light on these results, we explore the effects of in-
creasing the mesh width refinement on the convergence of the ensemble
mean and variance of the density. In particular we repeat the same experi-
ment with a computational domain consisting of 50× 50 cells i.e. with mesh
width exactly halved. Figure 5.20 displays the L1-norm of the difference
between the initial condition and the ensemble mean of the density at each
time step for both the original 25× 25 grid and the 50× 50 grid. Clearly
the error residual at higher mesh resolution is significantly smaller than the
error residual at low mesh resolution. Nevertheless, the error for the 50× 50
grid still suffers from oscillations. In light of the results of the ensemble
mean and ensemble variance given below, we feel that this is an indication
that using a fine mesh results in less numerical dissipation, which causes
the 1D numerical instability to be much worse.

Figure 5.21 and Figure 5.22 display the density plot and isodensity contour
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Figure 5.19 – The error ‖ρ0 − ρn
∆‖L1 vs. the number of time steps for the ensemble

mean and the original solution with ε = 0.7 using the RoeEC1 scheme.

plots of the ensemble mean in the case of the 50 × 50 grid. As expected
we observe that there is little indication of severe instability in the plots of
the ensemble mean. Indeed, similar to the case for the coarse mesh, the en-
semble mean once again does not appear to suffer from 1− 1/2D numerical
instability in the form of oscillating spikes.

The results for the ensemble variance of the density are more interesting. Fig-
ure 5.23 displays the ensemble variance for the 50× 50 mesh and we imme-
diately observe a significant qualitative difference from the coarser 25× 25
mesh. Indeed, the spike in the variance at the shock location is much sharper
and significantly more unstable and at the same time the variance at the out-
flow is significantly smaller and more sharply refined. The variance in this
case therefore is qualitatively very similar to the case of 1D numerical insta-
bility. This seems to support our conclusion that 1D numerical instability
in the form of an unstable shock location is a significant problem for higher
mesh resolutions.

Next, We explore the effect of decreasing the amplitude of the perturba-
tion parameter δ on the stability of the ensemble mean and variance of the
density of the approximate entropy measure valued solutions. We recall
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Figure 5.20 – The error ‖ρ0 − ρn
∆‖L1 vs. the number of time steps for both the 50× 50

grid and the 25× 25 grid using the RoeEC1 scheme.

that theoretical results (see, e.g., [18]) imply that decreasing the parameter δ
should lead to convergence of the mean and variance of the measure entropy
valued solution.

Figure 5.24 displays the L1-norm of the difference between the initial con-
dition and the ensemble mean of the density at each time step for different
values of the parameter δ. In contrast to the 1D case, we observe that the
error residuals remain qualitatively similar as the value of δ is decreased.
This is an important result because it seems to imply that ensemble mean
is stable with respect to perturbations of the parameter δ. While the error
residuals for all values of δ are still characterised by oscillations, the mag-
nitude of these oscillations is significantly smaller than magnitude of the
oscillations in the case of a single sample.

An analysis of the ensemble mean of the density for different values of δ
reveals once again that the ensemble mean in each case does not suffer from
1− 1/2D numerical instability. Figure 5.25 and Figure 5.26 display the en-
semble mean of the density for different values of δ = 0.10 and δ = 0.05
respectively and both plots are almost identical. In fact there is little observ-
able deviation of the shock location as well for both cases. This supports our
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Figure 5.21 – Density plots of the ensemble mean for the 50× 50 grid using the
RoeEC1 scheme at 21000, 22000, 23000 and 24000 time steps.
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Figure 5.22 – Isodensity contour plots of the ensemble mean for the 50× 50 grid
using the RoeEC1 scheme at 21000, 22000, 23000 and 24000 time steps.
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Figure 5.23 – Contour plots of the ensemble variance of the density for the 50× 50
grid using the RoeEC1 scheme at 21000, 22000, 23000 and 24000 time steps.

conclusion that the ensemble mean of the entropy solution is stable under
perturbations of the initial shock position.

A similar result is obtained for the ensemble variance of the density. Figure
5.27 and Figure 5.28 display the ensemble variance for δ = 0.10 and δ = 0.05
respectively. We once again observe that the variance consists of a small
spike at the shock location and a larger spike at the outflow and furthermore,
while the variance at the shock location does oscillate slightly, the variance at
the outflow appears more stable. It is thus reasonable to conclude once more
that the ensemble variance also does not suffer from 1− 1/2D instability and
is stable under perturbation of the shock position parameter ε.

In view of the results of Experiment 1 we feel that the following three con-
clusions can be drawn:

• The error residual of the ensemble mean of the density of the cor-
responding measure valued Cauchy problem is significantly smaller
than the error residual of the solution to the original Cauchy problem.

• The ensemble mean and variance still suffer from 1D numerical in-
stability but do not appear to suffer from the more severe 1 − 1/2D

77



5. The Carbuncle Phenomenon in 1-1/2D

Figure 5.24 – The error ‖ρ0 − ρn
∆‖L1 vs. the number of time steps for different values

of the parameter δ using the RoeEC1 scheme.

instability. The 1D numerical instability in the form of an oscillating
shock position is more severe for a higher mesh resolution.

• Both the ensemble mean and the ensemble variance seem to be stable
under perturbations of the shock position parameter ε.

We feel that this is an extremely promising result because it indicates that
the 1− 1/2D carbuncle phenomenon can be resolved to a large degree using
the framework of entropy measure valued solutions. In particular this also
seems to support our conclusion that nature of the Carbuncle phenomenon
is significantly different in 1D and 1− 1/2D.

Experiment 2

We next consider the following corresponding 1− 1/2D MV Cauchy problem
involving the Euler equations (5.1) by perturbing the initial conditions (5.4).

Let (Ω,F , P) be a probability space, let Θ : Ω → [0, 25] be a uniformly
distributed random variable, let κ ∈ R be a constant and consider the same
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Figure 5.25 – Isodensity contour plots of the ensemble mean for the parameter
δ = 0.10 using the RoeEC1 scheme at 21000, 22000, 23000 and 24000 time steps.
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Figure 5.26 – Isodensity contour plots of the ensemble mean for the parameter
δ = 0.05 using the RoeEC1 scheme at 21000, 22000, 23000 and 24000 time steps.
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Figure 5.27 – Contour plots of the ensemble variance of the density for the parame-
ter δ = 0.10 using the RoeEC1 scheme at 21000, 22000, 23000 and 24000 time steps.

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

21000 Time Steps

0

0.1

0.2

0.3

0.4

0.5

0.6

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

22000 Time Steps

0.1

0.2

0.3

0.4

0.5

0.6

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

23000 Time Steps

0.1

0.2

0.3

0.4

0.5

0.6

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

24000 Time Steps

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5.28 – Contour plots of the ensemble variance of the density for the parame-
ter δ = 0.05 using the RoeEC1 scheme at 21000, 22000, 23000 and 24000 time steps.
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Figure 5.29 – Isodensity contour plots of the initial conditions for different realisa-
tions of the random variable Θ along with the original non-random initial condi-
tions.

Cauchy problem introduced in Section (5.1) with initial conditions given by

U0(x, y) = UL + UR
2√
π

∫ κΘx

0
e−t2

dt (5.8)

where

UL =



1 + f (M0)

2

1

0

1
γ(γ−1)M0

2 +
1
2 +

g(M0)

γ(γ−1)M0
2 +

1
2 f (M0)

2


(5.9)

and

UR =



f (M0)− 1
2

1

0
g(M0)

γ(γ−1)M0
2 +

1
2 f (M0)

− 1
γ(γ−1)M0

2 +
1
2

2


. (5.10)

Thus, this experiment is essentially an extension of Experiment 2 in Chap-
ter 4 in two dimensions. The remaining set up including the boundary
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conditions is left unchanged. Once again we introduce a source of multi-
dimensional instability by seeding a single randomly chosen cell upstream
of the shock with a perturbation of the order of 10−14 and we then use
Monte Carlo simulations to estimate the mean and variance of the approxi-
mate measure valued solutions and analyse the stability and convergence of
these statistical quantities. Similar to Experiment 1, we focus specifically on
the test cases with parameter values κ = 10, ε = 0.7, M0 = 6 for the RoeEC1
(α = 0.2) scheme. All results were computed using 400 Monte Carlo itera-
tions.

Figure 5.30 and Figure 5.31, which display the density plot and the isoden-
sity contour plots of the RoeEC1 scheme for ε = 0.7, clearly indicates that
the RoeEC1 scheme seems to produce an ensemble mean of the density that
does not suffer from 1− 1/2D numerical instability. Indeed, the ensemble
mean consists of a sharply resolved steady state shock with very little de-
viation of the shock location and no appearance of oscillating spikes that
plague individual sample simulations.

Figure 5.32 displays the ensemble variance the density for both the RoeEC1
scheme. Once again we observe that the variance consists of a smaller spike
at the shock location and a sharper spike at the outflow boundary. We
also observe that the variance at the shock location does oscillate slightly,
which likely indicates unresolved 1D shock instability but the variance at
the outflow appears stable. This result therefore seems to imply that while
1D numerical instability is not completely resolved, both the ensemble mean
and variance do not suffer from 1− 1/2D numerical instability.

The analysis of the error residuals supports our conclusion. Figure 5.33
displays the L1-norm of the difference between initial condition and the en-
semble mean of the density at each time step for the RoeEC1 scheme. Once
more, two important points can immediately be inferred from the plot. First,
the error for the ensemble mean is much smaller than the error of the origi-
nal solution and second the oscillations in the error residual of the ensemble
mean is significantly smaller than the oscillations in the error residual of the
original solution. This is extremely similar to our results from Experiment 1
and we feel that this constitutes further evidence that while 1D numerical in-
stability in the form of an unstable shock position can persist in the ensemble
mean and variance, the entropy measure valued framework is nevertheless
successful at resolving the 1− 1/2D numerical instability.

In order to shed further light on these results, we also explore the effects of
increasing the value of the parameter κ on the convergence of the ensemble
mean and variance of the entropy measure valued solutions produced by
the RoeEC1 (α = 0.2) scheme. In particular we repeat the same experiment
for the value κ = 20. Figure 5.34 displays the L1-norm of the difference
between the initial condition and the ensemble mean of the density of the
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Figure 5.30 – Density plots of the ensemble mean for κ = 10 using the RoeEC1
scheme at 21000, 22000, 23000 and 24000 time steps.
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Figure 5.31 – Isodensity contour plots of the ensemble mean for κ = 10 using the
RoeEC1 scheme at 21000, 22000, 23000 and 24000 time steps.
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Figure 5.32 – Contour plots of the ensemble variance of the density for κ = 10 using
the RoeEC1 scheme at 21000, 22000, 23000 and 24000 time steps.

Figure 5.33 – The error ‖ρ0 − ρn
∆‖L1 vs. the number of time steps for the ensemble

mean for κ = 10 and the original solution with ε = 0.7.
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Figure 5.34 – The error ‖ρ0 − ρn
∆‖L1 vs. the number of time steps for both κ = 10

and κ = 20 using the RoeEC1 scheme.

approximate entropy measure valued solution at each time step for both κ =
20 and κ = 10. Clearly, the error residual for κ = 20 is smaller than the error
residual for κ = 10 and this seems to indicate that the ensemble mean is
stable under increasing values of κ. We note however that the error residual
for κ = 20 still suffers from oscillations which indicates that ensemble mean
is still afflicted by 1D numerical instability and has not converged to a steady
state solution even after 20, 000 time steps.

Figure 5.35 and Figure 5.36 display the density plot and the isodensity con-
tour plots of the ensemble mean of the density for κ = 20. We immedi-
ately observe that the mean does not appear to suffer from the more severe
1− 1/2D numerical instability and in fact the solution consists of a sharply
resolved shock. This supports the conclusion that the oscillations in the er-
ror residual for the case κ = 20 is due to 1D numerical instability in the
form of an oscillating shock position.

We obtain a similar result for the ensemble variance of the density. Figure
5.37 displays the ensemble variance for κ = 20. Once again we observe that
the variance consists of a smaller spike at the shock location and a sharper
spike that the outflow boundary. Furthermore, the variance seems more
stable for κ = 20 and the oscillation in the variance is not as prominent
as in the case κ = 10. We therefore conclude that the ensemble variance
is also stable under increasing values of κ. We feel that this is a strong
indication that the entropy measure valued solution framework is successful
at resolving the 1− 1/2D carbuncle phenomenon.
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Figure 5.35 – Density plots of the ensemble mean for κ = 20 using the RoeEC1
scheme at 21000, 22000, 23000 and 24000 time steps.
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Figure 5.36 – Isodensity contour plots of the ensemble mean for κ = 20 using the
RoeEC1 scheme at 21000, 22000, 23000 and 24000 time steps.
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Figure 5.37 – Contour plots of the ensemble variance of the density for κ = 20 using
the RoeEC1 scheme at 21000, 22000, 23000 and 24000 time steps.

Once again we feel that the same fundamental conclusions can be drawn in
light of the results of Experiment 2:

• The error residual of the ensemble mean of the density of the cor-
responding measure valued Cauchy problem is significantly smaller
than the error residual of the solution to the original Cauchy problem.

• The ensemble mean and variance still suffer from 1D numerical in-
stability but do not appear to suffer from the more severe 1 − 1/2D
instability.

• Both the ensemble mean and the ensemble variance seem to be stable
under increasing values of the parameter κ.

To summarise, the results of Experiment 1 and Experiment 2 both seem to
support the conclusion that the 1− 1/2D carbuncle phenomenon can be suc-
cessfully resolved in some cases simply by considering a corresponding MV
Cauchy problem and calculating the ensemble mean and ensemble variance.
Of course this methodology only works for schemes that are 1− 1/2D unsta-
ble of type 1 and in particular this includes the entropy consistent RoeEC1
scheme. In light of the failure of the entropy measure valued solution frame-
work to resolve the much more simple 1D carbuncle phenomenon we feel
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5. The Carbuncle Phenomenon in 1-1/2D

that our results constitute evidence that the nature of these two forms of
numerical instability is different. We conclude by remarking that from a
purely practical point of view the ensemble mean of the entropy measure
valued solutions produced by the RoeEC1 scheme in fact have a significantly
smaller error residual than both the Rusanov scheme and the entropy stable
RusanovES scheme, which therefore makes ensemble averaging an attractive
choice for sharply resolving steady shocks.
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Chapter 6

The Carbuncle Phenomenon in 2D

6.1 Numerical Experiments in 2D

The final step in our analysis is to consider the full-fledged Carbuncle prob-
lem in two dimensions. As mentioned previously, K. Peery and S. Imlay
first observed this numerical instability when computing hypersonic flows
past a blunt-body object [35]. Essentially, the use of the original Roe solver
resulted in a solution consisting of a pair of oblique shocks rather than a
smooth bow shock profile upstream of the solid cylinder. As a first step
therefore, we attempt to replicate this result using the various schemes in-
troduced in Chapter 4.

X

Y

Z

Figure 6.1 – Computational domain with a non-Cartesian Voronoi-type Mesh.

89



6. The Carbuncle Phenomenon in 2D

We consider the compressible Euler equations (5.1) along with the equation
of state for an ideal, polytropic gas given by (5.3). Figure 6.1 displays the
computational domain, which consists of a non-cartesian Voronoi-type mesh
with a total of 6084 cells. The semi-circle at the right represents a solid
cylinder and we therefore employ slip boundary conditions at this edge.
In addition, we employ far-field boundary conditions at the left edge and
outflow boundary conditions at the top and bottom edges.

We employ the following constant initial conditions for the purpose of this
numerical experiment:

U0(x, y) =


1
1
0
1

γ(γ−1)M2
0

 (6.1)

where M0 is the free-stream Mach number. Our goal is to analyse the steady-
state solution for different values of the Mach number M0 ∈ {2.0, 4.0, . . . , 20.0}
and different choices of numerical schemes and we therefore categorise our
numerical schemes in the following way:

• We declare a numerical scheme to be 2D stable if the steady state
solution produced by the scheme consists of a smooth bow shaped
shock upstream of the circular cylinder for all values of M0.

• We declare a numerical scheme to be 2D unstable type 1 if the steady
state shock solution produced by the scheme consists of a non-smooth
shock profile for some value of M0 but does not suffer from a fully
developed carbuncle in the form of oblique shocks for any value of
M0.

• We declare a numerical scheme to be 2D unstable type 2 if the steady
state shock solution produced by the scheme consists of a full fledged
carbuncle in the form of two oblique shocks upstream of the circular
cylinder for some value of M0.

All simulations were performed using a CFL number of 1/2 and were run
until the flux residue dropped below 10−6.

6.1.1 Results of the Numerical Experiments

As expected, our results indicate that the stability of the steady state shock
solution depends on the value of the Mach number and the choice of nu-
merical schemes. Table 6.1 displays the results of this 2D stability tests for
various schemes. We remark however, that these simulations have all been
performed for a specific choice of the mesh and it conceivable that using
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Figure 6.2 – Stable. Mach number plot of the steady state solution produced by the
RusanovES scheme for M0 = 12.

a different type of mesh with different mesh-width could result in slightly
different results.

Scheme 2D Stability
Rusanov Stable
RusanovES Stable
RoeEC1 (α = 0.2) Unstable Type 2
RoeEC1 (α = 0.8) Unstable Type 2
Roe Unstable Type 1
RoeES Unstable Type 1

Table 6.1 – Summary of the 2D stability of different numerical schemes.

Once again we observe that the numerically diffusive Rusanov and entropy
stable RusanovES schemes produce a smooth bow shaped shock with no
instability. Figure 6.2 for instance displays the approximate solution Mach
numbers produced by the entropy stable RusanovES scheme for M0 = 12
and we immediately observe that the solution appears to be completely sta-
ble.

On the other hand our results indicate that the original Roe scheme, the
RoeEC1 schemes and the RoeES scheme all exhibit varying degrees of nu-
merical instability. In fact, the RoeEC1 (α = 0.2) and (α = 0.8) schemes both
exhibit the full-fledged Carbuncle phenomenon for different values of M0.
Figure 6.3 for instance displays the approximate solution Mach numbers for
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6. The Carbuncle Phenomenon in 2D

Figure 6.3 – Unstable. Mach number plot of the steady state solution produced by
the RoeEC1 (α = 0.2) scheme for M0 = 12.

Figure 6.4 – Unstable. Mach number plot of the steady state solution produced by
the RoeES scheme for M0 = 6.
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Figure 6.5 – Unstable. Mach number plot of the steady state solution produced by
the original Roe scheme for M0 = 12 with log-scale colour mappings.

M0 = 12 produced by the RoeEC1 (α = 0.2) scheme and we observe im-
mediately that the solution consists of unphysical oblique shocks that have
been mentioned in the literature (see, e.g., [15, 34, 35]). A similar result is
also obtained for the RoeEC1 (α = 0.8) scheme. We remark however that
this carbuncle is only exhibited for specific values of M0. At other values,
the RoeEC1 scheme displays simple numerical instability of type 1.

Figure 6.4 displays the Mach numbers of the the approximate steady state
solution produced by the RoeES scheme and while solution does not consist
of a fully developed carbuncle, there is nevertheless visible numerical insta-
bility in the form of of a non-smooth shock profile. This clearly indicates
that while the RoeES scheme does not produce a completely unphysical so-
lution, it is nevertheless slightly unstable. A similar result is obtained for
the original Roe scheme as displayed in Figure 6.5.

6.2 Numerical Experiments Involving Perturbed Initial
Conditions

In this section we explore the effects of perturbing the initial conditions of
the Cauchy problem (6.1) on the steady state solutions produced by our
numerical schemes. Clearly, we can only expect the framework of entropy
measure valued solutions to be able to resolve this 2D numerical instability
if the approximate solutions produced by the numerical schemes exhibit
some form of moderate instability with respect to perturbations of the initial
conditions.
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6. The Carbuncle Phenomenon in 2D

Figure 6.6 – (Left to Right) Steady state solution produced by the RoeEC1 (α = 0.2)
scheme with unperturbed and perturbed initial velocity in the y-direction v0 = 0.5.

We begin by considering the RoeEC1 scheme, which is 2D unstable of type
2. As displayed in Figure 6.6, perturbing the initial value of the velocity in y-
direction has no effect on the steady state solution produced by the RoeEC1
(α = 0.2) scheme at all. Indeed, the mach number plot of the steady state
shock solution still consists of a carbuncle. We obtain similar results for the
RoeEC1 (α = 0.8) scheme and for perturbations of other initial conditions.

Figure 6.7 – (Left to Right) Steady state solution produced by the RoeEC1 (α =
0.2) scheme at M0 = 20 with unperturbed and perturbed initial velocity in the
y-direction v0 = 10−6.
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Figure 6.8 – (Left to Right) Steady state solution produced by the original Roe
scheme at M0 = 20 with unperturbed and perturbed initial velocity in the y-
direction v0 = 10−6.

Furthermore, perturbing the initial conditions for a value of M0 that origi-
nally produces an unstable type 1 solution actually results in a steady state
solution that consists of a fully developed carbuncle. Indeed, Figure 6.7
indicates that perturbing the initial y-direction velocity in the case of the
RoeEC1 (α = 0.2) scheme with free-stream Mach number M0 = 20 changes
the stability of the solution from unstable type 1 to unstable type 2. These
result very strongly indicate that the carbuncle solution produced by the un-
stable type 2 schemes is highly stable. It is therefore unreasonable to expect
ensemble averaging to be able to resolve this type of instability.

Next we consider the effect of perturbing the initial conditions on the un-
stable type 1 numerical schemes. Here we observe a significant difference
between the entropy stable RoeES scheme and the original Roe scheme. Our
results indicate that there is little effect of perturbing the initial conditions
on the steady state solution produced by the RoeES scheme. On the other
hand as shown in Figure 6.8, perturbing the initial conditions even slightly
results in the original Roe scheme changing from unstable type 1 to unstable
type 2. In fact, the carbuncle now produced by the Roe scheme is even more
pronounced than the carbuncle produced by the RoeEC1 (α = 0.2) scheme.

Based on these results we conclude that the steady state carbuncle solution
produced by the unstable numerical schemes listed in Table 6.1 is highly
stable and therefore considering a corresponding MV Cauchy problem by
perturbing the initial conditions (6.1) would not help in resolving 2D nu-
merical instability. On the contrary, these numerical experiments indicate
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Figure 6.9 – (Left to Right) Steady state solution produced by the RoeEC1 scheme
at M0 = 12 and M0 = 10.5.

that perturbing initial conditions does not result in any sort of moderate
instability in the steady-state solution that we can exploit using ensemble
averaging. Clearly therefore, the ensemble mean and variance of the ap-
proximate entropy measure valued solutions would continue to suffer from
instability of types 1 and 2.

6.3 Numerical Experiments Involving Perturbed Far-Field
Boundary Conditions

The next step in our analysis of 2D numerical instability is to explore the
effects of perturbing the far-field boundary conditions on the steady state
solutions to the Cauchy problem (6.1). In light of the failure of our usual
approach of perturbing initial conditions, we hope that the effects of perturb-
ing the far-field boundary conditions on the steady state solutions are more
promising. Unfortunately, this does not appear to be the case as we discuss
below.

We begin by exploring the effects of perturbing the far-field Mach Number
on the steady state solution produced by the unstable numerical schemes
listed in Table 6.1. Our results indicate that there is negligible effect on the
structure of the numerical instability in every case and as shown in Figure
6.9 and Figure 6.10, unstable solutions of type 1 and type 2 continue to
remain unstable with little observable difference. While the values of the
conserved variables do change slightly, there is nevertheless no change in
either the structure of fully developed carbuncle or the non-smooth shock
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Figure 6.10 – (Left to Right) Steady state solution produced by the Roe scheme at
M0 = 12 and M0 = 10.5.

profile. We conclude that perturbing the far-field Mach number has little
effect on the unstable steady state solutions.

Hence, we focus primarily on perturbations of the far-field boundary value
of the y-directional velocity. We consider the following 2D MV Cauchy
problem involving the two dimensional Euler equations (5.1) by perturbing
the initial conditions (6.1).

Let (Ω,F , P) be a probability space, let X : Ω → [−0.1, 0.1] be a uniformly
distributed random variable and consider the same Cauchy problem intro-
duced in Section (6.1) but with perturbed far-field boundary conditions
given by

U f ar− f ield =


1
1
X
1

γ(γ−1)M2
0

 , (6.2)

The remaining set up including the initial conditions and the other boundary
conditions are left unchanged. We again use Monte-Carlo simulations to
estimate the mean and variance of the approximate entropy measure valued
solutions to the associated 2D MV Cauchy problem and analyse the stability
of these statistical quantities. As a concrete test case, we consider the RoeEC1
(α = 0.2) scheme with Mach number M0 = 12. All results were computed
using 100 Monte-Carlo iterations.
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Figure 6.11 – Single sample steady state solution produced by the RoeEC1 scheme.

Figure 6.12 – Mach number plot of the ensemble mean of the approximate entropy
measure valued solution produced by the RoeEC1 scheme.

Figure 6.11 displays the mach number plot of a single sample of the approx-
imate entropy measure valued solution produced by the RoeEC1 scheme.
We immediately observe that the mach number plot of the sample solution
still consists of a fully developed carbuncle. The major qualitative difference
however is that the so-called ’bulge’ of the carbuncle is now asymmetric and
tilted downwards. Unfortunately, this result also hints that perturbing the
far-field boundary value of the y-directional velocity has little qualitative
effect on the structure of the carbuncle.
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Figure 6.13 – Ensemble variance of the approximate entropy measure valued solu-
tion produced by the RoeEC1 scheme.

Figure 6.12, which displays the ensemble mean of the approximate entropy
measure valued solutions confirms our conclusion. Clearly, the ensemble
mean continues to suffer from the fully developed 2D Carbuncle phenomenon.
Figure 6.13, which displays the ensemble variance indicates that while there
is a slight variation in the location of the shock profile, it is not enough
to produce carbuncle-free ensemble mean. We conclude therefore that 2D
Carbuncle problem appears to be extremely stable and continues to afflict
statistical quantities associated with the entropy measure valued solution to
this MV Cauchy problem.

To summarise, the results of this section unequivocally support the follow-
ing conclusions:

• The fully developed Carbuncle is extremely stable under perturbations
of both the initial conditions as well the far-field boundary conditions.

• In several cases, perturbing the initial conditions can cause unstable
solutions of type 1, which consist of a non-smooth shock profile, to
evolve into unstable solutions of type 2, which instead consist of a full
fledged carbuncle.

• The framework of entropy measure valued solutions is incapable of
resolving this 2D numerical instability.
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Chapter 7

Conclusions and Future Work

The entropy measure valued (EMV) solution paradigm is an exciting devel-
opment in the study of hyperbolic systems of conservation laws. This frame-
work has been successfully applied by S. Mishra and collaborators (see, e.g.,
[17, 18, 19]) to resolve issues of instability and lack of convergence in the
well-known Kelvin-Helmholtz and Richtmyer-Meshkov problems (see, e.g.,
[18]). This thesis has been an attempt to use the structure created by S.
Mishra and others to carry out a similar project for the Carbuncle problem
in hypersonic compressible fluid flow.

We began by providing numerical evidence that even state-of-the-art, first-
order finite volume schemes suffer from unstable shock resolution at very
high Mach numbers in 1D, 1− 2/2D and 2D settings. In each of these settings
we defined corresponding measure valued (MV) Cauchy problems and used
numerical simulations to estimate statistical quantities of interest associated
with the EMV solutions to these MV Cauchy problems.

Our results indicate that the ensemble mean and variance of the EMV so-
lutions are somewhat more stable in the 1D setting and in certain cases
significantly more stable in the 1− 1/2D setting. Indeed, the results of sev-
eral experiments in 1− 1/2D indicate strongly that it is possible to success-
fully resolve the 1− 1/2D Carbuncle phenomenon using ensemble averag-
ing. Unfortunately, we were less successful in the case of the full fledged
two-dimensional Carbuncle phenomenon and our results in the 2D setting
indicate that it is likely not possible to obtain an ensemble mean and vari-
ance that is carbuncle-free simply by considering corresponding MV Cauchy
problems.

Nevertheless, we do feel that we can draw some important conclusions from
our work. First, we believe that the results of our numerical experiments
very strongly support the prevalent view in the literature that the cause of
the Carbuncle phenomenon in 2D is largely numerical in nature. In other

101



7. Conclusions and Future Work

words unlike, for example, the Kelvin-Helmholtz instability problem, it is
not possible to obtain completely stable statistical quantities unless the un-
derlying numerical scheme is carbuncle-free. Second, we have demonstrated
that in some cases in the 1− 1/2D setting, it is nevertheless possible to pro-
duce significantly more stable statistical quantities using Monte Carlo meth-
ods and ensemble averaging, and we believe that this indicates that there is
some underlying structure in the oscillations that afflict unstable numerical
solutions. Contrasting this positive result with the more modest results we
obtained in the 1D setting allows us to conclude that the so-called Carbun-
cle phenomenon manifests in crucially different ways in higher dimensions.
In the absence of rigorous theoretical results explaining the cause of the
Carbuncle phenomenon, we believe that this conclusion provides some in-
sight into why, in some cases, trial-and-error approaches have not resulted
in a universally accepted cure for the Carbuncle phenomenon (see, e.g., the
comments of K. Kitamura et al in [28] regarding the HLLE solver).

The work presented in this thesis is by no means exhaustive in detail. In
particular, we have not performed numerical simulations on extremely fine
meshes and any future work in this direction should explore the effects of
using even finer meshes on the Carbuncle phenomenon. Furthermore, our
experiments in 2D were limited to a structured Voronoi-type mesh and it
would be interesting to explore the effects of using a completely unstruc-
tured mesh. Finally, we would be interested in exploring the evolution of
a fitted shock in 2D and comparing the results with our own experimental
setup.

102



Bibliography

[1] Luigi Ambrosio and Nicola Gigli. A user’s guide to optimal transport.
In Modelling and optimisation of flows on networks, pages 1–155. Springer,
2013.

[2] Erik J. Balder et al. Lectures on young measures. Cahiers de
Mathématiques de la Décision, 9517, 1995.

[3] John M. Ball. A version of the fundamental theorem for young mea-
sures. In PDEs and continuum models of phase transitions, pages 207–215.
Springer, 1989.

[4] Timothy J. Barth and Dennis C. Jespersen. The design and application
of upwind schemes on unstructured meshes. AIAA, 1989.

[5] Stefano Bianchini and Alberto Bressan. Vanishing viscosity solutions
of nonlinear hyperbolic systems. Annals of Mathematics, pages 223–342,
2005.

[6] Yann Chauvat, Jean-Marc Moschetta, and Jérémie Gressier. Shock wave
numerical structure and the carbuncle phenomenon. International Jour-
nal for Numerical Methods in Fluids, 47(8-9):903–909, 2005.

[7] Elisabetta Chiodaroli, Camillo De Lellis, and Ondrej Kreml. Global
ill-posedness of the isentropic system of gas dynamics. arXiv preprint
arXiv:1304.0123, 2013.

[8] Bernardo Cockburn, Frédéric Coquel, and Philipe G. LeFloch. Conver-
gence of the finite volume method for multidimensional conservation
laws. SIAM Journal on Numerical Analysis, 32(3):687–705, 1995.

[9] Bernardo Cockburn and Chi-Wang Shu. Tvb runge-kutta local pro-
jection discontinuous galerkin finite element method for conservation

103



Bibliography

laws. ii. general framework. Mathematics of Computation, 52(186):411–
435, 1989.

[10] Michael G. Crandall and Andrew Majda. Monotone difference ap-
proximations for scalar conservation laws. Mathematics of Computation,
34(149):1–21, 1980.

[11] Constantine M. Dafermos. Hyperbolic systems of conservation laws.
Springer, 1983.

[12] Ronald J. DiPerna. Convergence of approximate solutions to conserva-
tion laws. Archive for Rational Mechanics and Analysis, 82(1):27–70, 1983.

[13] Michael Dumbser, Jean-Marc Moschetta, and Jérémie Gressier. A matrix
stability analysis of the carbuncle phenomenon. Journal of Computational
Physics, 197(2):647–670, 2004.

[14] Bernd Einfeldt. On godunov-type methods for gas dynamics. SIAM
Journal on Numerical Analysis, 25(2):294–318, 1988.

[15] Volker Elling. The carbuncle phenomenon is incurable. Acta Mathemat-
ica Scientia, 29(6):1647–1656, 2009.

[16] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine prop-
erties of functions, volume 5. CRC press, 1991.

[17] Ulrik S. Fjordholm. High-order accurate entropy stable numerical schemes
for hyperbolic conservation laws. PhD thesis, Eidgenössische Technische
Hochschule ETH Zürich, Nr. 21025, 2013, 2012.

[18] Ulrik S. Fjordholm, Roger Y. Käppeli, Siddhartha Mishra, and Eitan
Tadmor. Construction of approximate entropy measure valued so-
lutions for hyperbolic systems of conservation laws. arXiv preprint
arXiv:1402.0909, 2014.

[19] Ulrik S. Fjordholm, Siddhartha Mishra, and Eitan Tadmor. Arbitrarily
high-order accurate entropy stable essentially nonoscillatory schemes
for systems of conservation laws. SIAM Journal on Numerical Analysis,
50(2):544–573, 2012.

[20] Ami Harten. High resolution schemes for hyperbolic conservation laws.
Journal of computational physics, 49(3):357–393, 1983.

[21] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R.
Chakravarthy. Uniformly high order accurate essentially non-
oscillatory schemes, iii. Journal of computational physics, 71(2):231–303,
1987.

104



Bibliography

[22] Andreas Hiltebrand and Siddhartha Mishra. Entropy stable shock
capturing streamline diffusion space-time discontinuous galerkin (dg)
methods for systems of conservation laws. Num. Math., to appear, 2013.

[23] Farzad Ismail. Toward a reliable prediction of shocks in hypersonic flow: re-
solving carbuncles with entropy and vorticity control. PhD thesis, University
of Michigan, Ann Arbor, 2006.

[24] Farzad Ismail and Philip L. Roe. Affordable, entropy-consistent euler
flux functions ii: Entropy production at shocks. Journal of Computational
Physics, 228(15):5410–5436, 2009.

[25] Farzad Ismail, Philip L. Roe, and Hiroaki Nishikawa. A proposed cure
to the carbuncle phenomenon. In Computational Fluid Dynamics 2006,
pages 149–154. Springer, 2009.

[26] Jerome Jaffre, Claes Johnson, and Anders Szepessy. Convergence of the
discontinuous galerkin finite element method for hyperbolic conserva-
tion laws. Mathematical Models and Methods in Applied Sciences, 5(03):367–
386, 1995.

[27] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of
weighted eno schemes. Technical report, DTIC Document, 1995.

[28] Keiichi Kitamura, Philip L. Roe, and Farzad Ismail. Evaluation of euler
fluxes for hypersonic flow computations. AIAA Journal, 47(1):44–53,
2009.
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